हिंदी

If There is an Error of 2% in Measuring the Length of a Simple Pendulum, Then Percentage Error in Its Period is - Mathematics

Advertisements
Advertisements

प्रश्न

If there is an error of 2% in measuring the length of a simple pendulum, then percentage error in its period is

विकल्प

  • 1%

  • 2%

  • 3%

  • 4%

MCQ

उत्तर

 1%
Let l be the length if the pendulum and T be the period.

\[\text { Also, let ∆ l be the error in the length and ∆ T be the error in the period } . \]

\[\text { We have }\]

\[\frac{∆ l}{l} \times 100 = 2\]

\[ \Rightarrow \frac{dl}{l} \times 100 = 2\]

\[\text { Now,} T = 2\pi\sqrt{\frac{l}{g}}\]

Taking log on both sides, we get 

\[\log T = \log 2\pi + \frac{1}{2}\log l - \frac{1}{2}\log g\]

\[\text { Differentiating both sides w . r . t . x, we get }\]

\[\frac{1}{T}\frac{dT}{dl} = \frac{1}{2l}\]

\[ \Rightarrow \frac{dT}{dl} = \frac{T}{2l}\]

\[ \Rightarrow \frac{dl}{l} \times 100 = 2\frac{dT}{T} \times 100\]

\[ \Rightarrow \frac{dT}{T} \times 100 = \frac{2}{2}\]

\[ \Rightarrow \frac{∆ T}{T} \times 100 = 1\]

\[\text { Hence, there is an error of 1 % in calculating the period of the pendulum } .\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 14: Differentials, Errors and Approximations - Exercise 14.3 [पृष्ठ १३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 14 Differentials, Errors and Approximations
Exercise 14.3 | Q 1 | पृष्ठ १३

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Using differentials, find the approximate value of the following up to 3 places of decimal

`(0.999)^(1/10)`


Using differentials, find the approximate value of the following up to 3 places of decimal

`(81.5)^(1/4)`


Using differentials, find the approximate value of the following up to 3 places of decimal

`(32.15)^(1/5)`


Find the approximate change in the surface area of a cube of side x metres caused by decreasing the side by 1%


If the radius of a sphere is measured as 9 m with an error of 0.03 m, then find the approximate error in calculating in surface area


Using differentials, find the approximate value of each of the following.

`(33)^(1/5)`


The points on the curve 9y2 = x3, where the normal to the curve makes equal intercepts with the axes are

(A)`(4, +- 8/3)`

(B) `(4,(-8)/3)`

(C)`(4, +- 3/8)`

(D) `(+-4, 3/8)`


Find the approximate change in the volume ‘V’ of a cube of side x metres caused by decreasing the side by 1%.


If y = sin x and x changes from π/2 to 22/14, what is the approximate change in y ?


A circular metal plate expends under heating so that its radius increases by k%. Find the approximate increase in the area of the plate, if the radius of the plate before heating is 10 cm.


Using differential, find the approximate value of the following: \[\left( 0 . 007 \right)^\frac{1}{3}\]


Using differential, find the approximate value of the \[\sqrt{401}\] ?


Using differential, find the approximate value of the \[\left( 255 \right)^\frac{1}{4}\] ?


Using differential, find the approximate value of the loge 4.04, it being given that log104 = 0.6021 and log10e = 0.4343 ?


Using differential, find the approximate value of the  log10 10.1, it being given that log10e = 0.4343 ?


Using differential, find the approximate value of the \[\sin\left( \frac{22}{14} \right)\] ?


Using differential, find the approximate value of the \[\left( 82 \right)^\frac{1}{4}\] ?


Using differential, find the approximate value of the \[\left( \frac{17}{81} \right)^\frac{1}{4}\] ?


If the radius of a sphere is measured as 7 m with an error of 0.02 m, find the approximate error in calculating its volume ?


For the function y = x2, if x = 10 and ∆x = 0.1. Find ∆ y ?


If an error of k% is made in measuring the radius of a sphere, then percentage error in its volume is


A sphere of radius 100 mm shrinks to radius 98 mm, then the approximate decrease in its volume is


The pressure P and volume V of a gas are connected by the relation PV1/4 = constant. The percentage increase in the pressure corresponding to a deminition of 1/2 % in the volume is

 


Find the approximate values of : (3.97)4 


Find the approximate values of (4.01)3 


Find the approximate values of : sin 61° , given that 1° = 0.0174c, `sqrt(3) = 1.732`


Find the approximate values of : e0.995, given that e = 2.7183.


The approximate value of tan (44° 30°), given that 1° = 0.0175, is ______.


Find the approximate value of the function f(x) = `sqrt(x^2 + 3x)` at x = 1.02.


Using differentiation, approximate value of f(x) = x2 - 2x + 1 at x = 2.99 is ______.


Find the approximate value of (1.999)5.


Find the approximate volume of metal in a hollow spherical shell whose internal and external radii are 3 cm and 3.0005 cm respectively


If the radius of a sphere is measured as 9 cm with an error of 0.03 cm, then find the approximating error in calculating its volume.


If `(x) = 3x^2 + 15x + 5`, then the approximate value of `f(3.02)` is


The approximate change in volume of a cube of side `x` meters coverd by increasing the side by 3% is


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×