Advertisements
Advertisements
प्रश्न
Using differential, find the approximate value of the following: \[\left( 0 . 007 \right)^\frac{1}{3}\]
उत्तर
\[\text { Consider the function} y = f\left( x \right) = \sqrt[3]{x .}\]
\[\text { Let }: \]
\[ x = 0 . 008 \]
\[ x + ∆ x = 0 . 007\]
\[\text { Then }, ∆ x = - 0 . 001\]
\[\text { For } x = 0 . 008, \]
\[ y = \sqrt{0 . 008} = 0 . 2\]
\[\text { Let }: \]
\[ dx = ∆ x = - 0 . 001\]
\[\text { Now,} y = \sqrt[3]{x}\]
\[ \Rightarrow \frac{dy}{dx} = \frac{1}{3 \left( x \right)^\frac{2}{3}}\]
\[ \Rightarrow \left( \frac{dy}{dx} \right)_{x = 0 . 008} = \frac{1}{3 \times 0 . 04} = \frac{1}{0 . 12}\]
\[ \therefore ∆ y = dy = \frac{dy}{dx}dx = \frac{1}{0 . 12} \times 0 . 001 = \frac{1}{120}\]
\[ \Rightarrow ∆ y = \frac{1}{120} = 0 . 008333\]
\[ \therefore \left( 0 . 007 \right)^\frac{1}{3} = y + ∆ y = 0 . 191667\]
APPEARS IN
संबंधित प्रश्न
Using differentials, find the approximate value of the following up to 3 places of decimal
`sqrt(25.3)`
Using differentials, find the approximate value of the following up to 3 places of decimal
`sqrt(0.6)`
Using differentials, find the approximate value of the following up to 3 places of decimal
`(15)^(1/4)`
Find the approximate change in the volume V of a cube of side x metres caused by increasing side by 1%.
Find the approximate change in the surface area of a cube of side x metres caused by decreasing the side by 1%
The approximate change in the volume of a cube of side x metres caused by increasing the side by 3% is
A. 0.06 x3 m3
B. 0.6 x3 m3
C. 0.09 x3 m3
D. 0.9 x3 m3
A circular metal plate expends under heating so that its radius increases by k%. Find the approximate increase in the area of the plate, if the radius of the plate before heating is 10 cm.
If there is an error of 0.1% in the measurement of the radius of a sphere, find approximately the percentage error in the calculation of the volume of the sphere ?
The height of a cone increases by k%, its semi-vertical angle remaining the same. What is the approximate percentage increase (i) in total surface area, and (ii) in the volume, assuming that k is small ?
Using differential, find the approximate value of the log10 10.1, it being given that log10e = 0.4343 ?
Using differential, find the approximate value of the \[\sin\left( \frac{22}{14} \right)\] ?
Using differential, find the approximate value of the \[\left( 80 \right)^\frac{1}{4}\] ?
Using differential, find the approximate value of the \[\left( 66 \right)^\frac{1}{3}\] ?
Using differential, find the approximate value of the \[\sqrt{0 . 48}\] ?
Using differential, find the approximate value of the \[\left( \frac{17}{81} \right)^\frac{1}{4}\] ?
Using differential, find the approximate value of the \[\left( 3 . 968 \right)^\frac{3}{2}\] ?
Find the approximate value of f (2.01), where f (x) = 4x2 + 5x + 2 ?
The height of a cylinder is equal to the radius. If an error of α % is made in the height, then percentage error in its volume is
If the ratio of base radius and height of a cone is 1 : 2 and percentage error in radius is λ %, then the error in its volume is
The approximate value of (33)1/5 is
The circumference of a circle is measured as 28 cm with an error of 0.01 cm. The percentage error in the area is
Find the approximate value of f(3.02), up to 2 places of decimal, where f(x) = 3x2 + 5x + 3.
For the function y = x2, if x = 10 and ∆x = 0.1. Find ∆y.
Find the approximate values of : `root(3)(28)`
Find the approximate values of : tan (45° 40'), given that 1° = 0.0175°.
Find the approximate values of : tan–1 (1.001)
Find the approximate values of : e2.1, given that e2 = 7.389
Find the approximate values of : 32.01, given that log 3 = 1.0986
Find the approximate values of : loge(101), given that loge10 = 2.3026.
Find the approximate values of : loge(9.01), given that log 3 = 1.0986.
The approximate value of tan (44° 30°), given that 1° = 0.0175, is ______.
Using differentiation, approximate value of f(x) = x2 - 2x + 1 at x = 2.99 is ______.
If y = x4 – 10 and if x changes from 2 to 1.99, what is the change in y ______.
If `(x) = 3x^2 + 15x + 5`, then the approximate value of `f(3.02)` is
The approximate change in volume of a cube of side `x` meters coverd by increasing the side by 3% is
The approximate value of f(x) = x3 + 5x2 – 7x + 9 at x = 1.1 is ______.