Advertisements
Advertisements
प्रश्न
Using differential, find the approximate value of the \[\left( 80 \right)^\frac{1}{4}\] ?
उत्तर
\[\text { Consider the function } y = f\left( x \right) = \left( x \right)^\frac{1}{4} . \]
\[\text { Let }: \]
\[ x = 81 \]
\[x + ∆ x = 80\]
\[\text { Then }, \]
\[ ∆ x = - 1\]
\[\text { For } x = 81, \]
\[ y = \left( 81 \right)^\frac{1}{4} = 3\]
\[\text { Let }: \]
\[ dx = ∆ x = - 1\]
\[\text { Now,} y = \left( x \right)^\frac{1}{4} \]
\[ \Rightarrow \frac{dy}{dx} = \frac{1}{4 \left( x \right)^\frac{3}{4}}\]
\[ \Rightarrow \left( \frac{dy}{dx} \right)_{x = 81} = \frac{1}{108}\]
\[ \therefore ∆ y = dy = \frac{dy}{dx}dx = \frac{1}{108} \times \left( - 1 \right) = - 0 . 009259\]
\[ \Rightarrow ∆ y = - 0 . 009259\]
\[ \therefore \left( 80 \right)^\frac{1}{4} = y + ∆ y = 2 . 99074\]
APPEARS IN
संबंधित प्रश्न
Using differentials, find the approximate value of the following up to 3 places of decimal
`sqrt(49.5)`
Using differentials, find the approximate value of the following up to 3 places of decimal
`(0.999)^(1/10)`
Using differentials, find the approximate value of the following up to 3 places of decimal
`(26)^(1/3)`
Using differentials, find the approximate value of the following up to 3 places of decimal
`(255)^(1/4)`
Using differentials, find the approximate value of the following up to 3 places of decimal
`(26.57)^(1/3)`
Using differentials, find the approximate value of the following up to 3 places of decimal
`(81.5)^(1/4)`
Find the approximate value of f (5.001), where f (x) = x3 − 7x2 + 15.
The approximate change in the volume of a cube of side x metres caused by increasing the side by 3% is
A. 0.06 x3 m3
B. 0.6 x3 m3
C. 0.09 x3 m3
D. 0.9 x3 m3
Using differentials, find the approximate value of each of the following.
`(17/81)^(1/4)`
The normal at the point (1, 1) on the curve 2y + x2 = 3 is
(A) x + y = 0
(B) x − y = 0
(C) x + y + 1 = 0
(D) x − y = 1
The normal to the curve x2 = 4y passing (1, 2) is
(A) x + y = 3
(B) x − y = 3
(C) x + y = 1
(D) x − y = 1
The pressure p and the volume v of a gas are connected by the relation pv1.4 = const. Find the percentage error in p corresponding to a decrease of 1/2% in v .
1 Using differential, find the approximate value of the following:
\[\sqrt{25 . 02}\]
Using differential, find the approximate value of the following: \[\left( 0 . 007 \right)^\frac{1}{3}\]
Using differential, find the approximate value of the \[\left( 15 \right)^\frac{1}{4}\] ?
Using differential, find the approximate value of the \[\frac{1}{(2 . 002 )^2}\] ?
Using differential, find the approximate value of the \[\cos\left( \frac{11\pi}{36} \right)\] ?
Using differential, find the approximate value of the \[\left( 29 \right)^\frac{1}{3}\] ?
Using differential, find the approximate value of the \[\sqrt{0 . 48}\] ?
Using differential, find the approximate value of the \[{25}^\frac{1}{3}\] ?
Find the approximate value of f (2.01), where f (x) = 4x2 + 5x + 2 ?
A piece of ice is in the form of a cube melts so that the percentage error in the edge of cube is a, then find the percentage error in its volume ?
If there is an error of a% in measuring the edge of a cube, then percentage error in its surface is
The approximate value of (33)1/5 is
Find the approximate value of f(3.02), up to 2 places of decimal, where f(x) = 3x2 + 5x + 3.
Find the approximate values of : `root(5)(31.98)`
Find the approximate values of : sin (29° 30'), given that 1°= 0.0175°, `sqrt(3) = 1.732`
Find the approximate values of : tan–1 (1.001)
Find the approximate values of : 32.01, given that log 3 = 1.0986
Find the approximate value of (1.999)5.
If y = x4 – 10 and if x changes from 2 to 1.99, what is the change in y ______.
If the radius of a sphere is measured as 9 cm with an error of 0.03 cm, then find the approximating error in calculating its volume.
If the radius of a sphere is measured as 9 m with an error of 0.03 m. the find the approximate error in calculating its surface area
The approximate change in volume of a cube of side `x` meters coverd by increasing the side by 3% is
Find the approximate value of tan−1 (1.002).
[Given: π = 3.1416]