Advertisements
Advertisements
प्रश्न
Find the approximate value of f (2.01), where f (x) = 4x2 + 5x + 2 ?
उत्तर
\[\text { Let }: \]
\[ x = 2\]
\[x + ∆ x = 2 . 01\]
\[ \Rightarrow ∆ x = 0 . 01\]
\[f\left( x \right) = 4 x^2 + 5x + 2\]
\[ \Rightarrow f\left( x = 2 \right) = 16 + 10 + 2 = 28\]
\[\text { Now,} y = f\left( x \right)\]
\[ \Rightarrow \frac{dy}{dx} = 8x + 5\]
\[ \therefore dy = ∆ y = \frac{dy}{dx}dx = \left( 8x + 5 \right) \times 0 . 01 = \left( 16 + 5 \right) \times 0 . 01 = 0 . 21\]
\[ \therefore f\left( 2 . 01 \right) = y + ∆ y = 28 . 21\]
APPEARS IN
संबंधित प्रश्न
Using differentials, find the approximate value of the following up to 3 places of decimal
`sqrt(0.6)`
Find the approximate value of f (5.001), where f (x) = x3 − 7x2 + 15.
Find the approximate change in the surface area of a cube of side x metres caused by decreasing the side by 1%
If the radius of a sphere is measured as 9 m with an error of 0.03 m, then find the approximate error in calculating in surface area
If f (x) = 3x2 + 15x + 5, then the approximate value of f (3.02) is
A. 47.66
B. 57.66
C. 67.66
D. 77.66
Find the approximate value of log10 (1016), given that log10e = 0⋅4343.
Find the approximate change in the volume ‘V’ of a cube of side x metres caused by decreasing the side by 1%.
The radius of a sphere shrinks from 10 to 9.8 cm. Find approximately the decrease in its volume ?
The height of a cone increases by k%, its semi-vertical angle remaining the same. What is the approximate percentage increase (i) in total surface area, and (ii) in the volume, assuming that k is small ?
Using differential, find the approximate value of the following: \[\left( 0 . 009 \right)^\frac{1}{3}\]
Using differential, find the approximate value of the log10 10.1, it being given that log10e = 0.4343 ?
Using differential, find the approximate value of the \[\frac{1}{\sqrt{25 . 1}}\] ?
Using differential, find the approximate value of the \[\left( 80 \right)^\frac{1}{4}\] ?
Using differential, find the approximate value of the \[\sqrt{49 . 5}\] ?
Using differential, find the approximate value of the \[\left( 3 . 968 \right)^\frac{3}{2}\] ?
Using differential, find the approximate value of the \[\sqrt{0 . 082}\] ?
Find the approximate value of f (5.001), where f (x) = x3 − 7x2 + 15 ?
Find the approximate change in the value V of a cube of side x metres caused by increasing the side by 1% ?
For the function y = x2, if x = 10 and ∆x = 0.1. Find ∆ y ?
While measuring the side of an equilateral triangle an error of k % is made, the percentage error in its area is
A sphere of radius 100 mm shrinks to radius 98 mm, then the approximate decrease in its volume is
The pressure P and volume V of a gas are connected by the relation PV1/4 = constant. The percentage increase in the pressure corresponding to a deminition of 1/2 % in the volume is
The approximate value of (33)1/5 is
The circumference of a circle is measured as 28 cm with an error of 0.01 cm. The percentage error in the area is
For the function y = x2, if x = 10 and ∆x = 0.1. Find ∆y.
Find the approximate values of (4.01)3
Find the approximate values of : sin 61° , given that 1° = 0.0174c, `sqrt(3) = 1.732`
Find the approximate values of : sin (29° 30'), given that 1°= 0.0175°, `sqrt(3) = 1.732`
Find the approximate values of : cot–1 (0.999)
Find the approximate values of : tan–1 (1.001)
Find the approximate values of : loge(9.01), given that log 3 = 1.0986.
Find the approximate values of : f(x) = x3 + 5x2 – 7x + 10 at x = 1.12.
The approximate value of tan (44° 30°), given that 1° = 0.0175, is ______.
The approximate value of the function f(x) = x3 − 3x + 5 at x = 1.99 is ____________.
Using differentials, find the approximate value of `sqrt(0.082)`
The approximate change in volume of a cube of side `x` meters coverd by increasing the side by 3% is