Advertisements
Advertisements
प्रश्न
A sphere of radius 100 mm shrinks to radius 98 mm, then the approximate decrease in its volume is
विकल्प
12000 π mm3
800 π mm3
80000 π mm3
120 π mm3
उत्तर
80000 π mm3
Let x be the radius of the sphere and y be its volume.
\[x = 100, x + ∆ x = 98\]
\[ \Rightarrow ∆ x = - 2\]
\[y = \frac{4}{3}\pi x^3 \]
\[ \Rightarrow \frac{dy}{dx} = 4\pi x^2 \]
\[ \Rightarrow \left( \frac{dy}{dx} \right)_{x = 100} = 40000\pi\]
\[ \therefore ∆ y = dy = \frac{dy}{dx}dx = 40000\pi \times \left( - 2 \right) = - 80000\pi\]
\[\text { Hence, the decrease in the volume of the sphere is } 80000\pi \text{mm}^ 3.\]
APPEARS IN
संबंधित प्रश्न
Using differentials, find the approximate value of the following up to 3 places of decimal
`(0.999)^(1/10)`
Using differentials, find the approximate value of the following up to 3 places of decimal
`(401)^(1/2)`
Find the approximate change in the volume V of a cube of side x metres caused by increasing side by 1%.
Find the approximate change in the surface area of a cube of side x metres caused by decreasing the side by 1%
If the radius of a sphere is measured as 7 m with an error of 0.02m, then find the approximate error in calculating its volume.
The approximate change in the volume of a cube of side x metres caused by increasing the side by 3% is
A. 0.06 x3 m3
B. 0.6 x3 m3
C. 0.09 x3 m3
D. 0.9 x3 m3
Using differentials, find the approximate value of each of the following.
`(17/81)^(1/4)`
Show that the function given by `f(x) = (log x)/x` has maximum at x = e.
The normal to the curve x2 = 4y passing (1, 2) is
(A) x + y = 3
(B) x − y = 3
(C) x + y = 1
(D) x − y = 1
The height of a cone increases by k%, its semi-vertical angle remaining the same. What is the approximate percentage increase (i) in total surface area, and (ii) in the volume, assuming that k is small ?
1 Using differential, find the approximate value of the following:
\[\sqrt{25 . 02}\]
Using differential, find the approximate value of the following: \[\left( 0 . 009 \right)^\frac{1}{3}\]
Using differential, find the approximate value of the \[\left( 15 \right)^\frac{1}{4}\] ?
Using differential, find the approximate value of the \[\frac{1}{(2 . 002 )^2}\] ?
Using differential, find the approximate value of the loge 10.02, it being given that loge10 = 2.3026 ?
Using differentials, find the approximate values of the cos 61°, it being given that sin60° = 0.86603 and 1° = 0.01745 radian ?
Using differential, find the approximate value of the \[\sqrt{37}\] ?
Using differential, find the approximate value of the \[\left( 82 \right)^\frac{1}{4}\] ?
Using differential, find the approximate value of the \[\left( \frac{17}{81} \right)^\frac{1}{4}\] ?
Using differential, find the approximate value of the \[\sqrt{36 . 6}\] ?
Using differential, find the approximate value of the \[\left( 1 . 999 \right)^5\] ?
Find the approximate change in the surface area of a cube of side x metres caused by decreasing the side by 1% ?
If y = loge x, then find ∆y when x = 3 and ∆x = 0.03 ?
A piece of ice is in the form of a cube melts so that the percentage error in the edge of cube is a, then find the percentage error in its volume ?
If there is an error of 2% in measuring the length of a simple pendulum, then percentage error in its period is
For the function y = x2, if x = 10 and ∆x = 0.1. Find ∆y.
Find the approximate values of : (3.97)4
Find the approximate values of : tan (45° 40'), given that 1° = 0.0175°.
Find the approximate values of : 32.01, given that log 3 = 1.0986
Find the approximate values of : loge(101), given that loge10 = 2.3026.
Find the approximate values of : f(x) = x3 – 3x + 5 at x = 1.99.
Find the approximate values of : f(x) = x3 + 5x2 – 7x + 10 at x = 1.12.
The approximate value of the function f(x) = x3 − 3x + 5 at x = 1.99 is ____________.
Using differentiation, approximate value of f(x) = x2 - 2x + 1 at x = 2.99 is ______.
Find the approximate value of f(3.02), where f(x) = 3x2 + 5x + 3