हिंदी

Find the Approximate Change in the Surface Area of a Cube of Side X Metres Caused by Decreasing the Side by 1% ? - Mathematics

Advertisements
Advertisements

प्रश्न

Find the approximate change in the surface area of a cube of side x metres caused by decreasing the side by 1% ?

योग

उत्तर

Let y be the surface area of the cube.

\[y = 6 x^2 \]

\[\text { We have }\]

\[ \frac{\bigtriangleup x}{x} \times 100 = 1\]

\[\text { Now }, \]

\[\frac{dy}{dx} = 12x\]

\[ \Rightarrow \bigtriangleup y = dy = \frac{dy}{dx}dx = 12x \times \frac{x}{100} = 0 . 12 x^2 m^2 \]

\[\text { Hence, approximate change in the surface area of the cube is }0 . 12 x^2 m^2 .\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 14: Differentials, Errors and Approximations - Exercise 14.1 [पृष्ठ १०]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 14 Differentials, Errors and Approximations
Exercise 14.1 | Q 14 | पृष्ठ १०

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Using differentials, find the approximate value of the following up to 3 places of decimal

`(255)^(1/4)`


Using differentials, find the approximate value of the following up to 3 places of decimal

`(81.5)^(1/4)`


If the radius of a sphere is measured as 7 m with an error of 0.02m, then find the approximate error in calculating its volume.


Using differentials, find the approximate value of each of the following.

`(33)^(1/5)`


Show that the function given by `f(x) = (log x)/x` has maximum at x = e.


The normal to the curve x2 = 4y passing (1, 2) is

(A) x + y = 3

(B) x − y = 3

(C) x + = 1

(D) x − = 1


The points on the curve 9y2 = x3, where the normal to the curve makes equal intercepts with the axes are

(A)`(4, +- 8/3)`

(B) `(4,(-8)/3)`

(C)`(4, +- 3/8)`

(D) `(+-4, 3/8)`


A circular metal plate expends under heating so that its radius increases by k%. Find the approximate increase in the area of the plate, if the radius of the plate before heating is 10 cm.


1 Using differential, find the approximate value of the following:

\[\sqrt{25 . 02}\]


Using differential, find the approximate value of the following:  \[\left( 0 . 009 \right)^\frac{1}{3}\]


Using differential, find the approximate value of the following: \[\left( 0 . 007 \right)^\frac{1}{3}\]


Using differential, find the approximate value of the loge 4.04, it being given that log104 = 0.6021 and log10e = 0.4343 ?


Using differential, find the approximate value of the  log10 10.1, it being given that log10e = 0.4343 ?


Using differential, find the approximate value of the \[\left( 66 \right)^\frac{1}{3}\] ?


Using differential, find the approximate value of the  \[\sqrt{0 . 48}\] ?


Using differential, find the approximate value of the \[\left( 82 \right)^\frac{1}{4}\] ?


Using differential, find the approximate value of the \[\left( \frac{17}{81} \right)^\frac{1}{4}\] ?


Find the approximate value of log10 1005, given that log10 e = 0.4343 ?


For the function y = x2, if x = 10 and ∆x = 0.1. Find ∆ y ?


While measuring the side of an equilateral triangle an error of k % is made, the percentage error in its area is


Find the approximate values of : `root(3)(28)`


Find the approximate values of : `root(5)(31.98)`


Find the approximate values of : cot–1 (0.999)


Find the approximate values of : f(x) = x3 – 3x + 5 at x = 1.99.


Find the approximate values of : f(x) = x3 + 5x2 – 7x + 10 at x = 1.12.


The approximate value of tan (44° 30°), given that 1° = 0.0175, is ______.


Find the approximate value of the function f(x) = `sqrt(x^2 + 3x)` at x = 1.02.


Solve the following : Find the approximate value of cos–1 (0.51), given π = 3.1416, `(2)/sqrt(3)` = 1.1547.


The approximate value of the function f(x) = x3 − 3x + 5 at x = 1.99 is ____________.


Using differentiation, approximate value of f(x) = x2 - 2x + 1 at x = 2.99 is ______.


Using differentials, find the approximate value of `sqrt(0.082)`


Find the approximate volume of metal in a hollow spherical shell whose internal and external radii are 3 cm and 3.0005 cm respectively


The approximate change in volume of a cube of side `x` meters coverd by increasing the side by 3% is


The approximate value of f(x) = x3 + 5x2 – 7x + 9 at x = 1.1 is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×