हिंदी

If the Radius of a Sphere is Measured as 9 Cm with an Error of 0.03 M, Find the Approximate Error in Calculating Its Surface Area ? - Mathematics

Advertisements
Advertisements

प्रश्न

If the radius of a sphere is measured as 9 cm with an error of 0.03 m, find the approximate error in calculating its surface area ?

योग

उत्तर

Let x be the radius and be the surface area of the sphere.

\[\text { Then }, \]

\[x = 9\]

\[ ∆ x = 0 . 03 m = 3cm\]

\[ \Rightarrow x + ∆ x = 9 + 3 = 12 cm\]

\[y = 4 \pi x^2 \]

\[\text { For } x = 9, \]

\[ y = 4\pi \times 9^2 = 324\pi\]

\[\frac{dy}{dx} = 8\pi x\]

\[ \Rightarrow \left( \frac{dy}{dx} \right)_{x = 9} = 72\pi\]

\[ \therefore ∆ y = dy = \frac{dy}{dx}dx = 72\pi \times 3 = 216\pi {cm}^2 \]

\[\text { Therefore, the approximate error in the surface area is} 216\pi c m^2 . \]

\[\text { Disclaimer: This solution has been created according to the question given in the book . However, the solution given in the book is incorrect } .\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 14: Differentials, Errors and Approximations - Exercise 14.1 [पृष्ठ १०]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 14 Differentials, Errors and Approximations
Exercise 14.1 | Q 13 | पृष्ठ १०

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Using differentials, find the approximate value of the following up to 3 places of decimal

`(82)^(1/4)`


Using differentials, find the approximate value of the following up to 3 places of decimal

`(401)^(1/2)`


Using differentials, find the approximate value of the following up to 3 places of decimal

`(32.15)^(1/5)`


If the radius of a sphere is measured as 7 m with an error of 0.02m, then find the approximate error in calculating its volume.


Using differentials, find the approximate value of each of the following.

`(17/81)^(1/4)`

 


Show that the function given by `f(x) = (log x)/x` has maximum at x = e.


The normal to the curve x2 = 4y passing (1, 2) is

(A) x + y = 3

(B) x − y = 3

(C) x + = 1

(D) x − = 1


Find the approximate value of log10 (1016), given that log10e = 0⋅4343.


Find the approximate change in the volume ‘V’ of a cube of side x metres caused by decreasing the side by 1%.


If y = sin x and x changes from π/2 to 22/14, what is the approximate change in y ?


The radius of a sphere shrinks from 10 to 9.8 cm. Find approximately the decrease in its volume ?


Using differential, find the approximate value of the \[\left( 15 \right)^\frac{1}{4}\] ?


Using differential, find the approximate value of the loge 10.02, it being given that loge10 = 2.3026 ?


Using differential, find the approximate value of the \[\left( 80 \right)^\frac{1}{4}\] ?


Using differential, find the approximate value of the \[\left( \frac{17}{81} \right)^\frac{1}{4}\] ?


Using differential, find the approximate value of the  \[\sqrt{0 . 082}\] ?


Find the approximate value of f (2.01), where f (x) = 4x2 + 5x + 2 ?


Find the approximate value of f (5.001), where f (x) = x3 − 7x2 + 15 ? 


Find the approximate value of log10 1005, given that log10 e = 0.4343 ?


Find the approximate change in the surface area of a cube of side x metres caused by decreasing the side by 1% ?


If y = loge x, then find ∆y when x = 3 and ∆x = 0.03 ?


If the relative error in measuring the radius of a circular plane is α, find the relative error in measuring its area ?


If there is an error of a% in measuring the edge of a cube, then percentage error in its surface is


While measuring the side of an equilateral triangle an error of k % is made, the percentage error in its area is


For the function y = x2, if x = 10 and ∆x = 0.1. Find ∆y.


Find the approximate values of : `sqrt(8.95)`


Find the approximate values of (4.01)3 


Find the approximate values of : tan–1 (1.001)


Find the approximate values of : loge(101), given that loge10 = 2.3026.


Find the approximate values of : f(x) = x3 – 3x + 5 at x = 1.99.


The approximate value of tan (44° 30°), given that 1° = 0.0175, is ______.


Find the approximate value of sin (30° 30′). Give that 1° = 0.0175c and cos 30° = 0.866


Find the approximate value of tan−1 (1.002).
[Given: π = 3.1416]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×