हिंदी

For the Function Y = X2, If X = 10 and ∆X = 0.1. Find ∆Y. - Mathematics

Advertisements
Advertisements

प्रश्न

For the function y = x2, if x = 10 and ∆x = 0.1. Find ∆y.

योग

उत्तर

\[y = x^2 \]
\[ ∆ x = 0 . 1\]
\[ x = 10\]
\[\frac{dy}{dx} = 2x\]
\[ \Rightarrow \left( \frac{dy}{dx} \right)_{x = 10} = 20\]
\[ \Rightarrow ∆ y = dy = \frac{dy}{dx}dx = 20 \times 0 . 1 = 2\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 14: Differentials, Errors and Approximations - Exercise 14.2 [पृष्ठ १२]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 14 Differentials, Errors and Approximations
Exercise 14.2 | Q 1 | पृष्ठ १२

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Using differentials, find the approximate value of the following up to 3 places of decimal

`sqrt(25.3)`


Using differentials, find the approximate value of the following up to 3 places of decimal

`(0.999)^(1/10)`


Using differentials, find the approximate value of the following up to 3 places of decimal

`(255)^(1/4)`


Using differentials, find the approximate value of the following up to 3 places of decimal

`(0.0037)^(1/2)`


Using differentials, find the approximate value of the following up to 3 places of decimal

`(26.57)^(1/3)`


Using differentials, find the approximate value of the following up to 3 places of decimal

`(32.15)^(1/5)`


Find the approximate change in the surface area of a cube of side x metres caused by decreasing the side by 1%


If the radius of a sphere is measured as 9 m with an error of 0.03 m, then find the approximate error in calculating in surface area


Show that the function given by `f(x) = (log x)/x` has maximum at x = e.


The normal at the point (1, 1) on the curve 2y + x2 = 3 is

(A) x + y = 0

(B) x − = 0

(C) x + y + 1 = 0

(D) − y = 1


The normal to the curve x2 = 4y passing (1, 2) is

(A) x + y = 3

(B) x − y = 3

(C) x + = 1

(D) x − = 1


The points on the curve 9y2 = x3, where the normal to the curve makes equal intercepts with the axes are

(A)`(4, +- 8/3)`

(B) `(4,(-8)/3)`

(C)`(4, +- 3/8)`

(D) `(+-4, 3/8)`


Find the approximate change in the volume ‘V’ of a cube of side x metres caused by decreasing the side by 1%.


If y = sin x and x changes from π/2 to 22/14, what is the approximate change in y ?


If there is an error of 0.1% in the measurement of the radius of a sphere, find approximately the percentage error in the calculation of the volume of the sphere ?


The height of a cone increases by k%, its semi-vertical angle remaining the same. What is the approximate percentage increase (i) in total surface area, and (ii) in the volume, assuming that k is small ?


1 Using differential, find the approximate value of the following:

\[\sqrt{25 . 02}\]


Using differential, find the approximate value of the \[\sqrt{401}\] ?


Using differential, find the approximate value of the loge 4.04, it being given that log104 = 0.6021 and log10e = 0.4343 ?


Using differential, find the approximate value of the \[\sin\left( \frac{22}{14} \right)\] ?


Using differential, find the approximate value of the \[\sqrt{36 . 6}\] ?


Using differential, find the approximate value of the \[\left( 3 . 968 \right)^\frac{3}{2}\] ?


Using differential, find the approximate value of the  \[\sqrt{0 . 082}\] ?


Find the approximate value of log10 1005, given that log10 e = 0.4343 ?


Find the approximate change in the surface area of a cube of side x metres caused by decreasing the side by 1% ?


A piece of ice is in the form of a cube melts so that the percentage error in the edge of cube is a, then find the percentage error in its volume ?


The height of a cylinder is equal to the radius. If an error of α % is made in the height, then percentage error in its volume is


If y = xn  then the ratio of relative errors in y and x is


Find the approximate values of : f(x) = x3 – 3x + 5 at x = 1.99.


Solve the following : Find the approximate value of cos–1 (0.51), given π = 3.1416, `(2)/sqrt(3)` = 1.1547.


Using differentials, find the approximate value of `sqrt(0.082)`


Find the approximate volume of metal in a hollow spherical shell whose internal and external radii are 3 cm and 3.0005 cm respectively


If y = x4 – 10 and if x changes from 2 to 1.99, what is the change in y ______.


The approximate value of f(x) = x3 + 5x2 – 7x + 9 at x = 1.1 is ______.


Find the approximate value of sin (30° 30′). Give that 1° = 0.0175c and cos 30° = 0.866


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×