हिंदी

Using Differential, Find the Approximate Value of the Following: √ 25 . 02 - Mathematics

Advertisements
Advertisements

प्रश्न

1 Using differential, find the approximate value of the following:

\[\sqrt{25 . 02}\]

योग

उत्तर

\[\text { Consider the function y } = f\left( x \right) = \sqrt{x} . \]

\[\text { Let }: \]

\[ x = 25 \]

\[ x + ∆ x = 25 . 02\]

\[\text { Then, } \]

\[ ∆ x = 0 . 02\]

\[\text { For}   x = 25, \]

\[ y = \sqrt{25} = 5\]

\[\text { Let }: \]

\[ dx = ∆ x = 0 . 02\]

\[\text { Now,} y = \sqrt{x}\]

\[ \Rightarrow \frac{dy}{dx} = \frac{1}{2\sqrt{x}}\]

\[ \Rightarrow \left( \frac{dy}{dx} \right)_{x = 25} = \frac{1}{10}\]

\[ \therefore ∆ y = dy = \frac{dy}{dx}dx = \frac{1}{10} \times 0 . 02 = 0 . 002\]

\[ \Rightarrow ∆ y = 0 . 002\]

\[ \therefore \sqrt{25 . 02} = y + ∆ y = 5 . 002\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 14: Differentials, Errors and Approximations - Exercise 14.1 [पृष्ठ ९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 14 Differentials, Errors and Approximations
Exercise 14.1 | Q 9.01 | पृष्ठ ९

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Using differentials, find the approximate value of the following up to 3 places of decimal

`(0.009)^(1/3)`


Using differentials, find the approximate value of the following up to 3 places of decimal

`(15)^(1/4)`


Using differentials, find the approximate value of the following up to 3 places of decimal

`(26.57)^(1/3)`


Using differentials, find the approximate value of the following up to 3 places of decimal

`(3.968)^(3/2)`


Find the approximate change in the volume V of a cube of side x metres caused by increasing side by 1%.


Find the approximate change in the surface area of a cube of side x metres caused by decreasing the side by 1%


If the radius of a sphere is measured as 7 m with an error of 0.02m, then find the approximate error in calculating its volume.


Using differentials, find the approximate value of each of the following.

`(17/81)^(1/4)`

 


The normal at the point (1, 1) on the curve 2y + x2 = 3 is

(A) x + y = 0

(B) x − = 0

(C) x + y + 1 = 0

(D) − y = 1


Find the approximate value of log10 (1016), given that log10e = 0⋅4343.


If y = sin x and x changes from π/2 to 22/14, what is the approximate change in y ?


If there is an error of 0.1% in the measurement of the radius of a sphere, find approximately the percentage error in the calculation of the volume of the sphere ?


Using differential, find the approximate value of the  log10 10.1, it being given that log10e = 0.4343 ?


Using differential, find the approximate value of the \[\sqrt{26}\] ?


Using differential, find the approximate value of the  \[\sqrt{37}\] ?


Using differential, find the approximate value of the \[\left( 82 \right)^\frac{1}{4}\] ?


Using differential, find the approximate value of the \[\left( 1 . 999 \right)^5\] ?


Find the approximate value of f (2.01), where f (x) = 4x2 + 5x + 2 ?


For the function y = x2, if x = 10 and ∆x = 0.1. Find ∆ y ?


If y = loge x, then find ∆y when x = 3 and ∆x = 0.03 ?


While measuring the side of an equilateral triangle an error of k % is made, the percentage error in its area is


A sphere of radius 100 mm shrinks to radius 98 mm, then the approximate decrease in its volume is


The approximate value of (33)1/5 is


Find the approximate values of : `root(3)(28)`


Find the approximate values of : `root(5)(31.98)`


Find the approximate values of : (3.97)4 


Find the approximate values of : tan–1 (1.001)


The approximate value of tan (44° 30°), given that 1° = 0.0175, is ______.


The approximate value of the function f(x) = x3 − 3x + 5 at x = 1.99 is ____________.


Using differentiation, approximate value of f(x) = x2 - 2x + 1 at x = 2.99 is ______.


Find the approximate value of (1.999)5.


Find the approximate volume of metal in a hollow spherical shell whose internal and external radii are 3 cm and 3.0005 cm respectively


If the radius of a sphere is measured as 9 cm with an error of 0.03 cm, then find the approximating error in calculating its volume.


If the radius of a sphere is measured as 9 m with an error of 0.03 m. the find the approximate error in calculating its surface area


The approximate value of f(x) = x3 + 5x2 – 7x + 9 at x = 1.1 is ______.


Find the approximate value of tan−1 (1.002).
[Given: π = 3.1416]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×