Advertisements
Advertisements
प्रश्न
1 Using differential, find the approximate value of the following:
\[\sqrt{25 . 02}\]
उत्तर
\[\text { Consider the function y } = f\left( x \right) = \sqrt{x} . \]
\[\text { Let }: \]
\[ x = 25 \]
\[ x + ∆ x = 25 . 02\]
\[\text { Then, } \]
\[ ∆ x = 0 . 02\]
\[\text { For} x = 25, \]
\[ y = \sqrt{25} = 5\]
\[\text { Let }: \]
\[ dx = ∆ x = 0 . 02\]
\[\text { Now,} y = \sqrt{x}\]
\[ \Rightarrow \frac{dy}{dx} = \frac{1}{2\sqrt{x}}\]
\[ \Rightarrow \left( \frac{dy}{dx} \right)_{x = 25} = \frac{1}{10}\]
\[ \therefore ∆ y = dy = \frac{dy}{dx}dx = \frac{1}{10} \times 0 . 02 = 0 . 002\]
\[ \Rightarrow ∆ y = 0 . 002\]
\[ \therefore \sqrt{25 . 02} = y + ∆ y = 5 . 002\]
APPEARS IN
संबंधित प्रश्न
Using differentials, find the approximate value of the following up to 3 places of decimal
`(0.009)^(1/3)`
Using differentials, find the approximate value of the following up to 3 places of decimal
`(15)^(1/4)`
Using differentials, find the approximate value of the following up to 3 places of decimal
`(26.57)^(1/3)`
Using differentials, find the approximate value of the following up to 3 places of decimal
`(3.968)^(3/2)`
Find the approximate change in the volume V of a cube of side x metres caused by increasing side by 1%.
Find the approximate change in the surface area of a cube of side x metres caused by decreasing the side by 1%
If the radius of a sphere is measured as 7 m with an error of 0.02m, then find the approximate error in calculating its volume.
Using differentials, find the approximate value of each of the following.
`(17/81)^(1/4)`
The normal at the point (1, 1) on the curve 2y + x2 = 3 is
(A) x + y = 0
(B) x − y = 0
(C) x + y + 1 = 0
(D) x − y = 1
Find the approximate value of log10 (1016), given that log10e = 0⋅4343.
If y = sin x and x changes from π/2 to 22/14, what is the approximate change in y ?
If there is an error of 0.1% in the measurement of the radius of a sphere, find approximately the percentage error in the calculation of the volume of the sphere ?
Using differential, find the approximate value of the log10 10.1, it being given that log10e = 0.4343 ?
Using differential, find the approximate value of the \[\sqrt{26}\] ?
Using differential, find the approximate value of the \[\sqrt{37}\] ?
Using differential, find the approximate value of the \[\left( 82 \right)^\frac{1}{4}\] ?
Using differential, find the approximate value of the \[\left( 1 . 999 \right)^5\] ?
Find the approximate value of f (2.01), where f (x) = 4x2 + 5x + 2 ?
For the function y = x2, if x = 10 and ∆x = 0.1. Find ∆ y ?
If y = loge x, then find ∆y when x = 3 and ∆x = 0.03 ?
While measuring the side of an equilateral triangle an error of k % is made, the percentage error in its area is
A sphere of radius 100 mm shrinks to radius 98 mm, then the approximate decrease in its volume is
The approximate value of (33)1/5 is
Find the approximate values of : `root(3)(28)`
Find the approximate values of : `root(5)(31.98)`
Find the approximate values of : (3.97)4
Find the approximate values of : tan–1 (1.001)
The approximate value of tan (44° 30°), given that 1° = 0.0175, is ______.
The approximate value of the function f(x) = x3 − 3x + 5 at x = 1.99 is ____________.
Using differentiation, approximate value of f(x) = x2 - 2x + 1 at x = 2.99 is ______.
Find the approximate value of (1.999)5.
Find the approximate volume of metal in a hollow spherical shell whose internal and external radii are 3 cm and 3.0005 cm respectively
If the radius of a sphere is measured as 9 cm with an error of 0.03 cm, then find the approximating error in calculating its volume.
If the radius of a sphere is measured as 9 m with an error of 0.03 m. the find the approximate error in calculating its surface area
The approximate value of f(x) = x3 + 5x2 – 7x + 9 at x = 1.1 is ______.
Find the approximate value of tan−1 (1.002).
[Given: π = 3.1416]