Advertisements
Advertisements
प्रश्न
Using differential, find the approximate value of the \[\left( 82 \right)^\frac{1}{4}\] ?
उत्तर
\[\text { Consider the function }y = f\left( x \right) = \left( x \right)^\frac{1}{4} . \]
\[\text { Let }: \]
\[ x = 81 \]
\[x + ∆ x = 82\]
\[\text { Then}, \]
\[ ∆ x = 1\]
\[\text { For } x = 81, \]
\[ y = \left( 81 \right)^\frac{1}{4} = 3\]
\[\text { Let }: \]
\[ dx = ∆ x = 1\]
\[\text { Now }, y = \left( x \right)^\frac{1}{4} \]
\[ \Rightarrow \frac{dy}{dx} = \frac{1}{4 \left( x \right)^\frac{3}{4}}\]
\[ \Rightarrow \left( \frac{dy}{dx} \right)_{x = 81} = \frac{1}{108}\]
\[ \therefore ∆ y = dy = \frac{dy}{dx}dx = \frac{1}{108} \times 1 = 0 . 009259\]
\[ \Rightarrow ∆ y = 0 . 009259\]
\[ \therefore \left( 82 \right)^\frac{1}{4} = y + ∆ y = 3 . 009259\]
APPEARS IN
संबंधित प्रश्न
Find the approximate value of ` sqrt8.95 `
Using differentials, find the approximate value of the following up to 3 places of decimal
`sqrt(25.3)`
Using differentials, find the approximate value of the following up to 3 places of decimal
`(0.999)^(1/10)`
Using differentials, find the approximate value of the following up to 3 places of decimal
`(15)^(1/4)`
Using differentials, find the approximate value of the following up to 3 places of decimal
`(26)^(1/3)`
Using differentials, find the approximate value of the following up to 3 places of decimal
`(255)^(1/4)`
Find the approximate value of f (5.001), where f (x) = x3 − 7x2 + 15.
If the radius of a sphere is measured as 7 m with an error of 0.02m, then find the approximate error in calculating its volume.
Using differentials, find the approximate value of each of the following.
`(17/81)^(1/4)`
Using differentials, find the approximate value of each of the following.
`(33)^(1/5)`
If y = sin x and x changes from π/2 to 22/14, what is the approximate change in y ?
A circular metal plate expends under heating so that its radius increases by k%. Find the approximate increase in the area of the plate, if the radius of the plate before heating is 10 cm.
Using differential, find the approximate value of the \[\frac{1}{(2 . 002 )^2}\] ?
If the radius of a sphere is measured as 9 cm with an error of 0.03 m, find the approximate error in calculating its surface area ?
For the function y = x2, if x = 10 and ∆x = 0.1. Find ∆ y ?
If y = loge x, then find ∆y when x = 3 and ∆x = 0.03 ?
If the relative error in measuring the radius of a circular plane is α, find the relative error in measuring its area ?
If the percentage error in the radius of a sphere is α, find the percentage error in its volume ?
A piece of ice is in the form of a cube melts so that the percentage error in the edge of cube is a, then find the percentage error in its volume ?
If there is an error of a% in measuring the edge of a cube, then percentage error in its surface is
If an error of k% is made in measuring the radius of a sphere, then percentage error in its volume is
The pressure P and volume V of a gas are connected by the relation PV1/4 = constant. The percentage increase in the pressure corresponding to a deminition of 1/2 % in the volume is
Find the approximate value of f(3.02), up to 2 places of decimal, where f(x) = 3x2 + 5x + 3.
For the function y = x2, if x = 10 and ∆x = 0.1. Find ∆y.
Find the approximate values of : `root(3)(28)`
Find the approximate values of : (3.97)4
Find the approximate values of : sin 61° , given that 1° = 0.0174c, `sqrt(3) = 1.732`
Find the approximate values of : cos(60° 30°), given that 1° = 0.0175°, `sqrt(3) = 1.732`
Find the approximate values of : tan (45° 40'), given that 1° = 0.0175°.
Find the approximate values of : tan–1(0.999)
Find the approximate values of : e0.995, given that e = 2.7183.
Find the approximate values of : loge(9.01), given that log 3 = 1.0986.
Find the approximate value of the function f(x) = `sqrt(x^2 + 3x)` at x = 1.02.
The approximate value of the function f(x) = x3 − 3x + 5 at x = 1.99 is ____________.
If the radius of a sphere is measured as 9 cm with an error of 0.03 cm, then find the approximating error in calculating its volume.
Find the approximate value of sin (30° 30′). Give that 1° = 0.0175c and cos 30° = 0.866