Advertisements
Advertisements
प्रश्न
Using differential, find the approximate value of the \[\frac{1}{(2 . 002 )^2}\] ?
उत्तर
\[\text { Consider the function y } = f\left( x \right) = \frac{1}{x^2} . \]
\[\text { Let }: \]
\[ x = 2 \]
\[x + ∆ x = 2 . 002\]
\[\text { Then }, \]
\[ ∆ x = - 0 . 002\]
\[\text { For } x = 2 , \]
\[ y = \frac{1}{2^2} = \frac{1}{4}\]
\[\text { Let }: \]
\[ dx = ∆ x = 0 . 002\]
\[\text { Now,} y = \frac{1}{x^2}\]
\[ \Rightarrow \frac{dy}{dx} = \frac{2}{x^3}\]
\[ \Rightarrow \left( \frac{dy}{dx} \right)_{x = 2} = \frac{1}{4}\]
\[ \therefore ∆ y = dy = \frac{dy}{dx}dx = \frac{1}{4} \times - 0 . 002 = - 0 . 0005\]
\[ \Rightarrow ∆ y = - 0 . 0005\]
\[ \therefore \frac{1}{\left( 2 . 002 \right)^2} = y + ∆ y = 0 . 2495\]
APPEARS IN
संबंधित प्रश्न
Using differentials, find the approximate value of the following up to 3 places of decimal
`(0.0037)^(1/2)`
Using differentials, find the approximate value of the following up to 3 places of decimal
`(81.5)^(1/4)`
Using differentials, find the approximate value of the following up to 3 places of decimal
`(32.15)^(1/5)`
Find the approximate value of f (2.01), where f (x) = 4x2 + 5x + 2
Find the approximate change in the volume V of a cube of side x metres caused by increasing side by 1%.
If f (x) = 3x2 + 15x + 5, then the approximate value of f (3.02) is
A. 47.66
B. 57.66
C. 67.66
D. 77.66
Find the approximate value of log10 (1016), given that log10e = 0⋅4343.
The radius of a sphere shrinks from 10 to 9.8 cm. Find approximately the decrease in its volume ?
The pressure p and the volume v of a gas are connected by the relation pv1.4 = const. Find the percentage error in p corresponding to a decrease of 1/2% in v .
Using differential, find the approximate value of the following: \[\left( 0 . 007 \right)^\frac{1}{3}\]
Using differential, find the approximate value of the \[\left( 255 \right)^\frac{1}{4}\] ?
Using differential, find the approximate value of the loge 4.04, it being given that log104 = 0.6021 and log10e = 0.4343 ?
Using differential, find the approximate value of the \[\left( 29 \right)^\frac{1}{3}\] ?
Using differential, find the approximate value of the \[\sqrt{36 . 6}\] ?
Using differential, find the approximate value of the \[\sqrt{49 . 5}\] ?
Using differential, find the approximate value of the \[\left( 1 . 999 \right)^5\] ?
Find the approximate value of f (5.001), where f (x) = x3 − 7x2 + 15 ?
If there is an error of a% in measuring the edge of a cube, then percentage error in its surface is
The height of a cylinder is equal to the radius. If an error of α % is made in the height, then percentage error in its volume is
A sphere of radius 100 mm shrinks to radius 98 mm, then the approximate decrease in its volume is
If y = xn then the ratio of relative errors in y and x is
The circumference of a circle is measured as 28 cm with an error of 0.01 cm. The percentage error in the area is
Find the approximate values of : `root(3)(28)`
Find the approximate values of : tan (45° 40'), given that 1° = 0.0175°.
Find the approximate values of : tan–1(0.999)
Find the approximate values of : cot–1 (0.999)
Find the approximate values of : e0.995, given that e = 2.7183.
Find the approximate values of : f(x) = x3 + 5x2 – 7x + 10 at x = 1.12.
Find the approximate value of the function f(x) = `sqrt(x^2 + 3x)` at x = 1.02.
Solve the following : Find the approximate value of cos–1 (0.51), given π = 3.1416, `(2)/sqrt(3)` = 1.1547.
The approximate value of the function f(x) = x3 − 3x + 5 at x = 1.99 is ____________.
Using differentiation, approximate value of f(x) = x2 - 2x + 1 at x = 2.99 is ______.
The approximate change in volume of a cube of side `x` meters coverd by increasing the side by 3% is
Find the approximate value of tan−1 (1.002).
[Given: π = 3.1416]