English

Using Differential, Find the Approximate Value of the 1 ( 2 . 002 ) 2 ? - Mathematics

Advertisements
Advertisements

Question

Using differential, find the approximate value of the \[\frac{1}{(2 . 002 )^2}\] ?

Sum

Solution

\[\text { Consider the function y } = f\left( x \right) = \frac{1}{x^2} . \]

\[\text { Let }: \]

\[ x = 2 \]

\[x + ∆ x = 2 . 002\]

\[\text { Then }, \]

\[ ∆ x = - 0 . 002\]

\[\text { For } x = 2 , \]

\[ y = \frac{1}{2^2} = \frac{1}{4}\]

\[\text { Let }: \]

\[ dx = ∆ x = 0 . 002\]

\[\text { Now,} y = \frac{1}{x^2}\]

\[ \Rightarrow \frac{dy}{dx} = \frac{2}{x^3}\]

\[ \Rightarrow \left( \frac{dy}{dx} \right)_{x = 2} = \frac{1}{4}\]

\[ \therefore ∆ y = dy = \frac{dy}{dx}dx = \frac{1}{4} \times - 0 . 002 = - 0 . 0005\]

\[ \Rightarrow ∆ y = - 0 . 0005\]

\[ \therefore \frac{1}{\left( 2 . 002 \right)^2} = y + ∆ y = 0 . 2495\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 14: Differentials, Errors and Approximations - Exercise 14.1 [Page 9]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 14 Differentials, Errors and Approximations
Exercise 14.1 | Q 9.07 | Page 9

Video TutorialsVIEW ALL [2]

RELATED QUESTIONS

Using differentials, find the approximate value of the following up to 3 places of decimal

`sqrt(25.3)`


Using differentials, find the approximate value of the following up to 3 places of decimal

`(15)^(1/4)`


Using differentials, find the approximate value of the following up to 3 places of decimal

`(255)^(1/4)`


Using differentials, find the approximate value of the following up to 3 places of decimal

`(0.0037)^(1/2)`


If the radius of a sphere is measured as 7 m with an error of 0.02m, then find the approximate error in calculating its volume.


The points on the curve 9y2 = x3, where the normal to the curve makes equal intercepts with the axes are

(A)`(4, +- 8/3)`

(B) `(4,(-8)/3)`

(C)`(4, +- 3/8)`

(D) `(+-4, 3/8)`


The radius of a sphere shrinks from 10 to 9.8 cm. Find approximately the decrease in its volume ?


If there is an error of 0.1% in the measurement of the radius of a sphere, find approximately the percentage error in the calculation of the volume of the sphere ?


Using differential, find the approximate value of the following:  \[\left( 0 . 009 \right)^\frac{1}{3}\]


Using differential, find the approximate value of the \[\sqrt{401}\] ?


Using differential, find the approximate value of the \[\left( 255 \right)^\frac{1}{4}\] ?


Using differential, find the approximate value of the \[\cos\left( \frac{11\pi}{36} \right)\] ?


Using differential, find the approximate value of the \[\left( 66 \right)^\frac{1}{3}\] ?


Using differential, find the approximate value of the \[\left( \frac{17}{81} \right)^\frac{1}{4}\] ?


Using differential, find the approximate value of the \[\left( 33 \right)^\frac{1}{5}\] ?


Using differential, find the approximate value of the \[\sqrt{36 . 6}\] ?


Using differential, find the approximate value of the \[\left( 3 . 968 \right)^\frac{3}{2}\] ?


Find the approximate value of f (2.01), where f (x) = 4x2 + 5x + 2 ?


Find the approximate change in the surface area of a cube of side x metres caused by decreasing the side by 1% ?


For the function y = x2, if x = 10 and ∆x = 0.1. Find ∆ y ?


If the relative error in measuring the radius of a circular plane is α, find the relative error in measuring its area ?


If the percentage error in the radius of a sphere is α, find the percentage error in its volume ?


A piece of ice is in the form of a cube melts so that the percentage error in the edge of cube is a, then find the percentage error in its volume ?


While measuring the side of an equilateral triangle an error of k % is made, the percentage error in its area is


A sphere of radius 100 mm shrinks to radius 98 mm, then the approximate decrease in its volume is


If the ratio of base radius and height of a cone is 1 : 2 and percentage error in radius is λ %, then the error in its volume is


Find the approximate values of : `sqrt(8.95)`


Find the approximate values of (4.01)3 


The approximate value of the function f(x) = x3 − 3x + 5 at x = 1.99 is ____________.


Find the approximate value of (1.999)5.


Find the approximate volume of metal in a hollow spherical shell whose internal and external radii are 3 cm and 3.0005 cm respectively


If `(x) = 3x^2 + 15x + 5`, then the approximate value of `f(3.02)` is


Find the approximate value of tan−1 (1.002).
[Given: π = 3.1416]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×