Advertisements
Advertisements
Question
If there is an error of 0.1% in the measurement of the radius of a sphere, find approximately the percentage error in the calculation of the volume of the sphere ?
Solution
Let x be the radius and y be the volume of the sphere.
\[y = \frac{4}{3}\pi x^3 \]
\[\text { Let } ∆ x \text { be the error in the radius and } ∆ \text { y be the error in the volume }. \]
\[\text { Then,} \frac{∆ x}{x} \times 100 = 0 . 1\]
\[ \Rightarrow \frac{dx}{x} = \frac{1}{1000}\]
\[\text { Now,} y = \frac{4}{3}\pi x^3 \]
\[ \Rightarrow \frac{dy}{dx} = 4 \pi x^2 \]
\[ \Rightarrow dy = 4 \pi x^2 dx\]
\[ \Rightarrow \frac{dy}{y} = \frac{4 \pi x^2 dx}{\frac{4}{3}\pi x^3} = \frac{3}{x}dx\]
\[ \Rightarrow \frac{dy}{y} = \frac{3}{1000}\]
\[ \Rightarrow \frac{∆ y}{y} \times 100 = 0 . 3\]
Hence, the percentage error in the calculation of the volume of the sphere is 0.3.
APPEARS IN
RELATED QUESTIONS
Using differentials, find the approximate value of the following up to 3 places of decimal
`(0.999)^(1/10)`
Using differentials, find the approximate value of the following up to 3 places of decimal
`(15)^(1/4)`
Using differentials, find the approximate value of the following up to 3 places of decimal
`(255)^(1/4)`
Find the approximate value of f (2.01), where f (x) = 4x2 + 5x + 2
Find the approximate value of f (5.001), where f (x) = x3 − 7x2 + 15.
Find the approximate change in the volume V of a cube of side x metres caused by increasing side by 1%.
If f (x) = 3x2 + 15x + 5, then the approximate value of f (3.02) is
A. 47.66
B. 57.66
C. 67.66
D. 77.66
The normal at the point (1, 1) on the curve 2y + x2 = 3 is
(A) x + y = 0
(B) x − y = 0
(C) x + y + 1 = 0
(D) x − y = 1
The normal to the curve x2 = 4y passing (1, 2) is
(A) x + y = 3
(B) x − y = 3
(C) x + y = 1
(D) x − y = 1
Find the percentage error in calculating the surface area of a cubical box if an error of 1% is made in measuring the lengths of edges of the cube ?
Using differential, find the approximate value of the following: \[\left( 0 . 009 \right)^\frac{1}{3}\]
Using differential, find the approximate value of the following: \[\left( 0 . 007 \right)^\frac{1}{3}\]
Using differential, find the approximate value of the loge 10.02, it being given that loge10 = 2.3026 ?
Using differential, find the approximate value of the \[\sin\left( \frac{22}{14} \right)\] ?
Using differential, find the approximate value of the \[\cos\left( \frac{11\pi}{36} \right)\] ?
Using differential, find the approximate value of the \[\left( 80 \right)^\frac{1}{4}\] ?
Using differential, find the approximate value of the \[\left( 66 \right)^\frac{1}{3}\] ?
Using differential, find the approximate value of the \[\left( 82 \right)^\frac{1}{4}\] ?
Using differential, find the approximate value of the \[\left( 33 \right)^\frac{1}{5}\] ?
Using differential, find the approximate value of the \[\sqrt{49 . 5}\] ?
Using differential, find the approximate value of the \[\sqrt{0 . 082}\] ?
Find the approximate change in the surface area of a cube of side x metres caused by decreasing the side by 1% ?
If y = loge x, then find ∆y when x = 3 and ∆x = 0.03 ?
A piece of ice is in the form of a cube melts so that the percentage error in the edge of cube is a, then find the percentage error in its volume ?
If there is an error of 2% in measuring the length of a simple pendulum, then percentage error in its period is
If there is an error of a% in measuring the edge of a cube, then percentage error in its surface is
While measuring the side of an equilateral triangle an error of k % is made, the percentage error in its area is
Find the approximate values of : (3.97)4
Find the approximate values of : sin 61° , given that 1° = 0.0174c, `sqrt(3) = 1.732`
Find the approximate values of : sin (29° 30'), given that 1°= 0.0175°, `sqrt(3) = 1.732`
Find the approximate values of : tan (45° 40'), given that 1° = 0.0175°.
Find the approximate values of : e2.1, given that e2 = 7.389
Find the approximate values of : 32.01, given that log 3 = 1.0986
If the radius of a sphere is measured as 9 m with an error of 0.03 m. the find the approximate error in calculating its surface area
The approximate value of f(x) = x3 + 5x2 – 7x + 9 at x = 1.1 is ______.
Find the approximate value of tan−1 (1.002).
[Given: π = 3.1416]