English

Find the approximate value of tan−1 (1.002). [Given: π = 3.1416] - Mathematics and Statistics

Advertisements
Advertisements

Question

Find the approximate value of tan−1 (1.002).
[Given: π = 3.1416]

Sum

Solution

x = 1. 002

= 1 + 0.002

x = a + b

a = 1, b = 0.002

f(x) = tan−1 (x)

∴ f′(x) = `1/(1+x^2)​`

∴ f'(1) = `1/(1 + 1) = 1/2`

We know that

f(a + h) ≑ f(a) + hf' (a)

Taking a = 1, h = 0.002

f(1 + 0.002) ≑ f(1) + (0.002)f'(1)    ...(1)

Now f(x) = tan−1 x

∴ f(1) = tan−1 (1)

= `pi/4`

From (1)

f(1.002) ≑ `pi/4 + (0.002) (1/2)`

≑ `pi/4 + 0.001`

≑ `3.1416/4 + 0.001`

≑ 0.7854 + 0.001

≑ 0.7864

∴ tan−1 ≑ 0.7864

shaalaa.com
  Is there an error in this question or solution?
2023-2024 (March) Official

Video TutorialsVIEW ALL [2]

RELATED QUESTIONS

Find the approximate value of ` sqrt8.95 `


Using differentials, find the approximate value of the following up to 3 places of decimal

`sqrt(0.6)`


Using differentials, find the approximate value of the following up to 3 places of decimal

`(0.009)^(1/3)`


Using differentials, find the approximate value of the following up to 3 places of decimal

`(0.999)^(1/10)`


Using differentials, find the approximate value of the following up to 3 places of decimal

`(15)^(1/4)`


Using differentials, find the approximate value of the following up to 3 places of decimal

`(82)^(1/4)`


Using differentials, find the approximate value of the following up to 3 places of decimal

`(401)^(1/2)`


Using differentials, find the approximate value of the following up to 3 places of decimal

`(0.0037)^(1/2)`


Using differentials, find the approximate value of the following up to 3 places of decimal

`(3.968)^(3/2)`


Using differentials, find the approximate value of the following up to 3 places of decimal

`(32.15)^(1/5)`


Find the approximate value of f (2.01), where f (x) = 4x2 + 5x + 2


Find the approximate value of f (5.001), where f (x) = x3 − 7x2 + 15.


Find the approximate change in the volume V of a cube of side x metres caused by increasing side by 1%.


If the radius of a sphere is measured as 9 m with an error of 0.03 m, then find the approximate error in calculating in surface area


If f (x) = 3x2 + 15x + 5, then the approximate value of (3.02) is

A. 47.66

B. 57.66

C. 67.66

D. 77.66


Using differentials, find the approximate value of each of the following.

`(33)^(1/5)`


The normal at the point (1, 1) on the curve 2y + x2 = 3 is

(A) x + y = 0

(B) x − = 0

(C) x + y + 1 = 0

(D) − y = 1


The normal to the curve x2 = 4y passing (1, 2) is

(A) x + y = 3

(B) x − y = 3

(C) x + = 1

(D) x − = 1


The points on the curve 9y2 = x3, where the normal to the curve makes equal intercepts with the axes are

(A)`(4, +- 8/3)`

(B) `(4,(-8)/3)`

(C)`(4, +- 3/8)`

(D) `(+-4, 3/8)`


A circular metal plate expends under heating so that its radius increases by k%. Find the approximate increase in the area of the plate, if the radius of the plate before heating is 10 cm.


If there is an error of 0.1% in the measurement of the radius of a sphere, find approximately the percentage error in the calculation of the volume of the sphere ?


The height of a cone increases by k%, its semi-vertical angle remaining the same. What is the approximate percentage increase (i) in total surface area, and (ii) in the volume, assuming that k is small ?


Show that the relative error in computing the volume of a sphere, due to an error in measuring the radius, is approximately equal to three times the relative error in the radius ?


1 Using differential, find the approximate value of the following:

\[\sqrt{25 . 02}\]


Using differential, find the approximate value of the following:  \[\left( 0 . 009 \right)^\frac{1}{3}\]


Using differential, find the approximate value of the following: \[\left( 0 . 007 \right)^\frac{1}{3}\]


Using differential, find the approximate value of the \[\sqrt{401}\] ?


Using differential, find the approximate value of the \[\left( 255 \right)^\frac{1}{4}\] ?


Using differential, find the approximate value of the \[\frac{1}{(2 . 002 )^2}\] ?


Using differential, find the approximate value of the loge 4.04, it being given that log104 = 0.6021 and log10e = 0.4343 ?


Using differential, find the approximate value of the  log10 10.1, it being given that log10e = 0.4343 ?


Using differentials, find the approximate values of the cos 61°, it being given that sin60° = 0.86603 and 1° = 0.01745 radian ?


Using differential, find the approximate value of the \[\cos\left( \frac{11\pi}{36} \right)\] ?


Using differential, find the approximate value of the \[\left( 80 \right)^\frac{1}{4}\] ?


Using differential, find the approximate value of the \[\left( 66 \right)^\frac{1}{3}\] ?


Using differential, find the approximate value of the  \[\sqrt{37}\] ?


Using differential, find the approximate value of the  \[\sqrt{0 . 48}\] ?


Using differential, find the approximate value of the \[\sqrt{36 . 6}\] ?


Using differential, find the approximate value of the \[\left( 3 . 968 \right)^\frac{3}{2}\] ?


Using differential, find the approximate value of the \[\left( 1 . 999 \right)^5\] ?


Find the approximate value of f (5.001), where f (x) = x3 − 7x2 + 15 ? 


Find the approximate value of log10 1005, given that log10 e = 0.4343 ?


If the radius of a sphere is measured as 9 cm with an error of 0.03 m, find the approximate error in calculating its surface area ?


Find the approximate change in the surface area of a cube of side x metres caused by decreasing the side by 1% ?


If the radius of a sphere is measured as 7 m with an error of 0.02 m, find the approximate error in calculating its volume ?


A piece of ice is in the form of a cube melts so that the percentage error in the edge of cube is a, then find the percentage error in its volume ?


If there is an error of 2% in measuring the length of a simple pendulum, then percentage error in its period is


If there is an error of a% in measuring the edge of a cube, then percentage error in its surface is


If an error of k% is made in measuring the radius of a sphere, then percentage error in its volume is


The height of a cylinder is equal to the radius. If an error of α % is made in the height, then percentage error in its volume is


If the ratio of base radius and height of a cone is 1 : 2 and percentage error in radius is λ %, then the error in its volume is


The pressure P and volume V of a gas are connected by the relation PV1/4 = constant. The percentage increase in the pressure corresponding to a deminition of 1/2 % in the volume is

 


The approximate value of (33)1/5 is


For the function y = x2, if x = 10 and ∆x = 0.1. Find ∆y.


Find the approximate values of : `root(3)(28)`


Find the approximate values of : (3.97)4 


Find the approximate values of (4.01)3 


Find the approximate values of : sin 61° , given that 1° = 0.0174c, `sqrt(3) = 1.732`


Find the approximate values of : sin (29° 30'), given that 1°= 0.0175°, `sqrt(3) = 1.732`


Find the approximate values of : tan–1(0.999)


Find the approximate values of : cot–1 (0.999)


Find the approximate values of : 32.01, given that log 3 = 1.0986


Find the approximate values of : loge(101), given that loge10 = 2.3026.


Find the approximate values of : loge(9.01), given that log 3 = 1.0986.


Find the approximate values of : f(x) = x3 – 3x + 5 at x = 1.99.


Find the approximate values of : f(x) = x3 + 5x2 – 7x + 10 at x = 1.12.


The approximate value of tan (44° 30°), given that 1° = 0.0175, is ______.


Find the approximate value of the function f(x) = `sqrt(x^2 + 3x)` at x = 1.02.


Solve the following : Find the approximate value of cos–1 (0.51), given π = 3.1416, `(2)/sqrt(3)` = 1.1547.


The approximate value of the function f(x) = x3 − 3x + 5 at x = 1.99 is ____________.


Using differentiation, approximate value of f(x) = x2 - 2x + 1 at x = 2.99 is ______.


The approximate change in volume of a cube of side `x` meters coverd by increasing the side by 3% is


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×