Advertisements
Advertisements
Question
Using differential, find the approximate value of the following: \[\left( 0 . 009 \right)^\frac{1}{3}\]
Solution
\[\text { Consider the function } y = f\left( x \right) = \sqrt[3]{x} . \]
\[\text { Let }: \]
\[ x = 0 . 008\]
\[x + ∆ x = 0 . 009\]
\[\text { Then }, ∆ x = 0 . 001\]
\[\text { For } x = 0 . 008, \]
\[ y = \sqrt{0 . 008} = 0 . 2\]
\[\text { Let }: \]
\[ dx = ∆ x = 0 . 001\]
\[\text { Now,} y = \sqrt[3]{x}\]
\[ \Rightarrow \frac{dy}{dx} = \frac{1}{3 \left( x \right)^\frac{2}{3}}\]
\[ \Rightarrow \left( \frac{dy}{dx} \right)_{x = 0 . 008} = \frac{1}{3 \times 0 . 04} = \frac{1}{0 . 12}\]
\[ \therefore ∆ y = dy = \frac{dy}{dx}dx = \frac{1}{0 . 12} \times 0 . 001 = \frac{1}{120}\]
\[ \Rightarrow ∆ y = \frac{1}{120} = 0 . 008333\]
\[ \therefore \left( 0 . 009 \right)^\frac{1}{3} = y + ∆ y = 0 . 208333\]
APPEARS IN
RELATED QUESTIONS
Using differentials, find the approximate value of the following up to 3 places of decimal
`(26)^(1/3)`
Using differentials, find the approximate value of the following up to 3 places of decimal
`(82)^(1/4)`
Using differentials, find the approximate value of the following up to 3 places of decimal
`(32.15)^(1/5)`
Find the approximate change in the surface area of a cube of side x metres caused by decreasing the side by 1%
Using differentials, find the approximate value of each of the following.
`(17/81)^(1/4)`
The points on the curve 9y2 = x3, where the normal to the curve makes equal intercepts with the axes are
(A)`(4, +- 8/3)`
(B) `(4,(-8)/3)`
(C)`(4, +- 3/8)`
(D) `(+-4, 3/8)`
Find the approximate value of log10 (1016), given that log10e = 0⋅4343.
If there is an error of 0.1% in the measurement of the radius of a sphere, find approximately the percentage error in the calculation of the volume of the sphere ?
The pressure p and the volume v of a gas are connected by the relation pv1.4 = const. Find the percentage error in p corresponding to a decrease of 1/2% in v .
The height of a cone increases by k%, its semi-vertical angle remaining the same. What is the approximate percentage increase (i) in total surface area, and (ii) in the volume, assuming that k is small ?
1 Using differential, find the approximate value of the following:
\[\sqrt{25 . 02}\]
Using differential, find the approximate value of the loge 4.04, it being given that log104 = 0.6021 and log10e = 0.4343 ?
Using differential, find the approximate value of the loge 10.02, it being given that loge10 = 2.3026 ?
Using differentials, find the approximate values of the cos 61°, it being given that sin60° = 0.86603 and 1° = 0.01745 radian ?
Using differential, find the approximate value of the \[\frac{1}{\sqrt{25 . 1}}\] ?
Using differential, find the approximate value of the \[\left( 29 \right)^\frac{1}{3}\] ?
Using differential, find the approximate value of the \[\sqrt{37}\] ?
Using differential, find the approximate value of the \[\sqrt{0 . 48}\] ?
Using differential, find the approximate value of the \[\left( 82 \right)^\frac{1}{4}\] ?
Using differential, find the approximate value of the \[\left( 33 \right)^\frac{1}{5}\] ?
Using differential, find the approximate value of the \[\sqrt{49 . 5}\] ?
Using differential, find the approximate value of the \[\sqrt{0 . 082}\] ?
If y = loge x, then find ∆y when x = 3 and ∆x = 0.03 ?
If the percentage error in the radius of a sphere is α, find the percentage error in its volume ?
The height of a cylinder is equal to the radius. If an error of α % is made in the height, then percentage error in its volume is
Find the approximate values of : sin (29° 30'), given that 1°= 0.0175°, `sqrt(3) = 1.732`
Find the approximate values of : tan (45° 40'), given that 1° = 0.0175°.
Find the approximate values of : loge(9.01), given that log 3 = 1.0986.
Find the approximate values of : f(x) = x3 – 3x + 5 at x = 1.99.
Find the approximate values of : f(x) = x3 + 5x2 – 7x + 10 at x = 1.12.
The approximate value of tan (44° 30°), given that 1° = 0.0175, is ______.
If the radius of a sphere is measured as 9 cm with an error of 0.03 cm, then find the approximating error in calculating its volume.
If the radius of a sphere is measured as 9 m with an error of 0.03 m. the find the approximate error in calculating its surface area
If `(x) = 3x^2 + 15x + 5`, then the approximate value of `f(3.02)` is
The approximate change in volume of a cube of side `x` meters coverd by increasing the side by 3% is
The approximate value of f(x) = x3 + 5x2 – 7x + 9 at x = 1.1 is ______.
Find the approximate value of sin (30° 30′). Give that 1° = 0.0175c and cos 30° = 0.866
Find the approximate value of tan−1 (1.002).
[Given: π = 3.1416]