Advertisements
Advertisements
Question
Find the approximate values of : f(x) = x3 + 5x2 – 7x + 10 at x = 1.12.
Solution
f(x) = x3 + 5x2 – 7x + 10
∴ f'(x) = `d/dx(x^3 + 5x^2 - 7x + 10)`
= 3x2 + 5 x 2x – 7 x 1 + 0
= 3x2 + 10x – 7
Take a = 1, h = 0.12
Then f(a) = f(1)
= (1)3 + 5(1)2 – 7(1) + 10
= 1 + 5 – 7 + 10
= 9
and
f'(a) = f'(1)
= 3(1)2 + 10(1) – 7
= 3 + 10 – 7
= 6
The formula for approximation is
f(a + h) ≑ f(a) + h.f'(a)
∴ f(1.12) = f(1 + 0.12)
≑ f(1) + (0.12).f'(1)
≑ 9 + 0.12 x 6
≑ 9 + 0.72
= 9.72
∴ f(1.12) ≑ 9.72.
APPEARS IN
RELATED QUESTIONS
Using differentials, find the approximate value of the following up to 3 places of decimal
`sqrt(0.6)`
Using differentials, find the approximate value of the following up to 3 places of decimal
`(0.999)^(1/10)`
Using differentials, find the approximate value of the following up to 3 places of decimal
`(15)^(1/4)`
Using differentials, find the approximate value of the following up to 3 places of decimal
`(401)^(1/2)`
Using differentials, find the approximate value of the following up to 3 places of decimal
`(0.0037)^(1/2)`
Using differentials, find the approximate value of the following up to 3 places of decimal
`(32.15)^(1/5)`
Find the approximate value of f (2.01), where f (x) = 4x2 + 5x + 2
If the radius of a sphere is measured as 9 m with an error of 0.03 m, then find the approximate error in calculating in surface area
The approximate change in the volume of a cube of side x metres caused by increasing the side by 3% is
A. 0.06 x3 m3
B. 0.6 x3 m3
C. 0.09 x3 m3
D. 0.9 x3 m3
Using differentials, find the approximate value of each of the following.
`(33)^(1/5)`
The normal to the curve x2 = 4y passing (1, 2) is
(A) x + y = 3
(B) x − y = 3
(C) x + y = 1
(D) x − y = 1
The points on the curve 9y2 = x3, where the normal to the curve makes equal intercepts with the axes are
(A)`(4, +- 8/3)`
(B) `(4,(-8)/3)`
(C)`(4, +- 3/8)`
(D) `(+-4, 3/8)`
Find the approximate change in the volume ‘V’ of a cube of side x metres caused by decreasing the side by 1%.
If y = sin x and x changes from π/2 to 22/14, what is the approximate change in y ?
Find the percentage error in calculating the surface area of a cubical box if an error of 1% is made in measuring the lengths of edges of the cube ?
If there is an error of 0.1% in the measurement of the radius of a sphere, find approximately the percentage error in the calculation of the volume of the sphere ?
The height of a cone increases by k%, its semi-vertical angle remaining the same. What is the approximate percentage increase (i) in total surface area, and (ii) in the volume, assuming that k is small ?
Show that the relative error in computing the volume of a sphere, due to an error in measuring the radius, is approximately equal to three times the relative error in the radius ?
1 Using differential, find the approximate value of the following:
\[\sqrt{25 . 02}\]
Using differential, find the approximate value of the \[\sqrt{401}\] ?
Using differential, find the approximate value of the \[\left( 255 \right)^\frac{1}{4}\] ?
Using differential, find the approximate value of the loge 4.04, it being given that log104 = 0.6021 and log10e = 0.4343 ?
Using differential, find the approximate value of the log10 10.1, it being given that log10e = 0.4343 ?
Using differential, find the approximate value of the \[\cos\left( \frac{11\pi}{36} \right)\] ?
Using differential, find the approximate value of the \[\left( 80 \right)^\frac{1}{4}\] ?
Using differential, find the approximate value of the \[\sqrt{26}\] ?
Using differential, find the approximate value of the \[\sqrt{37}\] ?
Find the approximate value of log10 1005, given that log10 e = 0.4343 ?
If the radius of a sphere is measured as 9 cm with an error of 0.03 m, find the approximate error in calculating its surface area ?
Find the approximate change in the surface area of a cube of side x metres caused by decreasing the side by 1% ?
If the relative error in measuring the radius of a circular plane is α, find the relative error in measuring its area ?
A piece of ice is in the form of a cube melts so that the percentage error in the edge of cube is a, then find the percentage error in its volume ?
If there is an error of 2% in measuring the length of a simple pendulum, then percentage error in its period is
If an error of k% is made in measuring the radius of a sphere, then percentage error in its volume is
If loge 4 = 1.3868, then loge 4.01 =
If the ratio of base radius and height of a cone is 1 : 2 and percentage error in radius is λ %, then the error in its volume is
The pressure P and volume V of a gas are connected by the relation PV1/4 = constant. The percentage increase in the pressure corresponding to a deminition of 1/2 % in the volume is
If y = xn then the ratio of relative errors in y and x is
Find the approximate value of f(3.02), up to 2 places of decimal, where f(x) = 3x2 + 5x + 3.
Find the approximate values of : `sqrt(8.95)`
Find the approximate values of : `root(3)(28)`
Find the approximate values of : (3.97)4
Find the approximate values of (4.01)3
Find the approximate values of : sin (29° 30'), given that 1°= 0.0175°, `sqrt(3) = 1.732`
Find the approximate values of : cos(60° 30°), given that 1° = 0.0175°, `sqrt(3) = 1.732`
Find the approximate values of : tan–1 (1.001)
Find the approximate values of : f(x) = x3 – 3x + 5 at x = 1.99.
The approximate value of tan (44° 30°), given that 1° = 0.0175, is ______.
Find the approximate value of the function f(x) = `sqrt(x^2 + 3x)` at x = 1.02.
Solve the following : Find the approximate value of cos–1 (0.51), given π = 3.1416, `(2)/sqrt(3)` = 1.1547.
The approximate value of the function f(x) = x3 − 3x + 5 at x = 1.99 is ____________.
Using differentials, find the approximate value of `sqrt(0.082)`
Find the approximate value of (1.999)5.
If y = x4 – 10 and if x changes from 2 to 1.99, what is the change in y ______.
If the radius of a sphere is measured as 9 m with an error of 0.03 m. the find the approximate error in calculating its surface area
If `(x) = 3x^2 + 15x + 5`, then the approximate value of `f(3.02)` is
The approximate change in volume of a cube of side `x` meters coverd by increasing the side by 3% is
The approximate value of f(x) = x3 + 5x2 – 7x + 9 at x = 1.1 is ______.
Find the approximate value of tan−1 (1.002).
[Given: π = 3.1416]