Advertisements
Advertisements
Question
Find the approximate change in the volume ‘V’ of a cube of side x metres caused by decreasing the side by 1%.
Solution
The volume of a cube
`V = x^3`
`(dV)/(dx) = 3x^2`
`:. deltax = x. 1/100 = (-x)/100`
∴ Chnage in volume
`deltaV = ((dV)/dx)deltax = (3x^2).((-x)/100) = -(3/100)x^3`
`= - 3/100V = -V 3/100`
∴ Change in volume decrease by 3%
APPEARS IN
RELATED QUESTIONS
Using differentials, find the approximate value of the following up to 3 places of decimal
`(82)^(1/4)`
Find the approximate change in the volume V of a cube of side x metres caused by increasing side by 1%.
If the radius of a sphere is measured as 9 m with an error of 0.03 m, then find the approximate error in calculating in surface area
Using differentials, find the approximate value of each of the following.
`(33)^(1/5)`
The normal to the curve x2 = 4y passing (1, 2) is
(A) x + y = 3
(B) x − y = 3
(C) x + y = 1
(D) x − y = 1
Find the approximate value of log10 (1016), given that log10e = 0⋅4343.
If y = sin x and x changes from π/2 to 22/14, what is the approximate change in y ?
1 Using differential, find the approximate value of the following:
\[\sqrt{25 . 02}\]
Using differential, find the approximate value of the \[\sqrt{401}\] ?
Using differential, find the approximate value of the \[\sqrt{0 . 48}\] ?
Using differential, find the approximate value of the \[\sqrt{49 . 5}\] ?
Find the approximate value of log10 1005, given that log10 e = 0.4343 ?
If the radius of a sphere is measured as 9 cm with an error of 0.03 m, find the approximate error in calculating its surface area ?
If the radius of a sphere is measured as 7 m with an error of 0.02 m, find the approximate error in calculating its volume ?
If there is an error of a% in measuring the edge of a cube, then percentage error in its surface is
For the function y = x2, if x = 10 and ∆x = 0.1. Find ∆y.
Find the approximate values of : `root(3)(28)`
Find the approximate values of : `root(5)(31.98)`
Find the approximate values of : (3.97)4
Find the approximate values of (4.01)3
Find the approximate values of : cos(60° 30°), given that 1° = 0.0175°, `sqrt(3) = 1.732`
Find the approximate values of : 32.01, given that log 3 = 1.0986
Find the approximate values of : loge(9.01), given that log 3 = 1.0986.
The approximate value of tan (44° 30°), given that 1° = 0.0175, is ______.
Solve the following : Find the approximate value of cos–1 (0.51), given π = 3.1416, `(2)/sqrt(3)` = 1.1547.
Find the approximate volume of metal in a hollow spherical shell whose internal and external radii are 3 cm and 3.0005 cm respectively
If the radius of a sphere is measured as 9 m with an error of 0.03 m. the find the approximate error in calculating its surface area
The approximate value of f(x) = x3 + 5x2 – 7x + 9 at x = 1.1 is ______.