Advertisements
Advertisements
Question
Find the approximate value of log10 1005, given that log10 e = 0.4343 ?
Solution
\[\text { Let }: \]
\[ y = f\left( x \right) = \log_{10} x\]
\[\text { Here }, \]
\[x = 1000, \]
\[x + ∆ x = 1005\]
\[ \Rightarrow ∆ x = 5\]
\[ \Rightarrow dx = ∆ x = 5\]
\[\text{ For } x = 1000, \]
\[y = \log_{10} 1000 = \log_{10} \left( 10 \right)^3 = 3\]
\[\text { Now }, y = \log_{10} x = \frac{\log_e x}{\log_e 10}\]
\[ \therefore \frac{dy}{dx} = \frac{0 . 4343}{x}\]
\[ \Rightarrow \left( \frac{dy}{dx} \right)_{x = 1000} = \frac{0 . 4343}{1000} = 0 . 0004343\]
\[ ∆ y = dy = \frac{dy}{dx}dx = 0 . 0004343 \times 5 = 0 . 0021715\]
\[ \therefore \log_{10} 1005 = y + ∆ y = 3 . 0021715\]
APPEARS IN
RELATED QUESTIONS
Using differentials, find the approximate value of the following up to 3 places of decimal
`(0.999)^(1/10)`
Using differentials, find the approximate value of the following up to 3 places of decimal
`(26)^(1/3)`
Using differentials, find the approximate value of the following up to 3 places of decimal
`(255)^(1/4)`
Using differentials, find the approximate value of the following up to 3 places of decimal
`(82)^(1/4)`
Using differentials, find the approximate value of the following up to 3 places of decimal
`(0.0037)^(1/2)`
Using differentials, find the approximate value of the following up to 3 places of decimal
`(81.5)^(1/4)`
Using differentials, find the approximate value of each of the following.
`(17/81)^(1/4)`
Using differentials, find the approximate value of each of the following.
`(33)^(1/5)`
The height of a cone increases by k%, its semi-vertical angle remaining the same. What is the approximate percentage increase (i) in total surface area, and (ii) in the volume, assuming that k is small ?
1 Using differential, find the approximate value of the following:
\[\sqrt{25 . 02}\]
Using differential, find the approximate value of the following: \[\left( 0 . 007 \right)^\frac{1}{3}\]
Using differential, find the approximate value of the \[\left( 15 \right)^\frac{1}{4}\] ?
Using differential, find the approximate value of the \[\frac{1}{(2 . 002 )^2}\] ?
Using differential, find the approximate value of the loge 10.02, it being given that loge10 = 2.3026 ?
Using differentials, find the approximate values of the cos 61°, it being given that sin60° = 0.86603 and 1° = 0.01745 radian ?
Using differential, find the approximate value of the \[\left( 29 \right)^\frac{1}{3}\] ?
Using differential, find the approximate value of the \[\left( 66 \right)^\frac{1}{3}\] ?
Using differential, find the approximate value of the \[\sqrt{0 . 48}\] ?
Using differential, find the approximate value of the \[\sqrt{36 . 6}\] ?
Using differential, find the approximate value of the \[\sqrt{49 . 5}\] ?
Using differential, find the approximate value of the \[{25}^\frac{1}{3}\] ?
Find the approximate value of f (2.01), where f (x) = 4x2 + 5x + 2 ?
If the relative error in measuring the radius of a circular plane is α, find the relative error in measuring its area ?
If the percentage error in the radius of a sphere is α, find the percentage error in its volume ?
If there is an error of 2% in measuring the length of a simple pendulum, then percentage error in its period is
If an error of k% is made in measuring the radius of a sphere, then percentage error in its volume is
If loge 4 = 1.3868, then loge 4.01 =
A sphere of radius 100 mm shrinks to radius 98 mm, then the approximate decrease in its volume is
The pressure P and volume V of a gas are connected by the relation PV1/4 = constant. The percentage increase in the pressure corresponding to a deminition of 1/2 % in the volume is
If y = xn then the ratio of relative errors in y and x is
Find the approximate values of : sin (29° 30'), given that 1°= 0.0175°, `sqrt(3) = 1.732`
Find the approximate values of : 32.01, given that log 3 = 1.0986
Solve the following : Find the approximate value of cos–1 (0.51), given π = 3.1416, `(2)/sqrt(3)` = 1.1547.
The approximate value of the function f(x) = x3 − 3x + 5 at x = 1.99 is ____________.
Find the approximate value of (1.999)5.
If `(x) = 3x^2 + 15x + 5`, then the approximate value of `f(3.02)` is
The approximate value of f(x) = x3 + 5x2 – 7x + 9 at x = 1.1 is ______.