English

The Pressure P and Volume V of a Gas Are Connected by the Relation Pv1/4 = Constant. the Percentage Increase in the Pressure Corresponding to a Deminition of 1/2 % in the Volume is - Mathematics

Advertisements
Advertisements

Question

The pressure P and volume V of a gas are connected by the relation PV1/4 = constant. The percentage increase in the pressure corresponding to a deminition of 1/2 % in the volume is

 

Options

  • \[\frac{1}{2} \%\]

  • \[\frac{1}{4} \%\]

  • \[\frac{1}{8} \%\]

  • none of these

MCQ

Solution

 \[\frac{1} {8} \]%

We have

\[\frac{\bigtriangleup V}{V} = \frac{- 1}{2} % \]

\[P V^\frac{1}{4} = \text { constant  }= k \left( \text { say } \right)\]

\[\text { Taking log on both sides, we get }\]

\[\log \left( P V^\frac{1}{4} \right) = \log k\]

\[ \Rightarrow \log P + \frac{1}{4}\log V = \log k\]

\[\text { Differentiating both sides w . r . t . x, we get }\]

\[\frac{1}{P}\frac{dP}{dV} + \frac{1}{4V} = 0\]

\[ \Rightarrow \frac{dP}{P} = - \frac{dV}{4V} = - \frac{1}{4} \times \frac{- 1}{2} = \frac{1}{8}\]

\[\text { Hence, the increase in the pressure is } \frac{1}{8} \% .\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 14: Differentials, Errors and Approximations - Exercise 14.3 [Page 13]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 14 Differentials, Errors and Approximations
Exercise 14.3 | Q 9 | Page 13

Video TutorialsVIEW ALL [2]

RELATED QUESTIONS

Find the approximate value of cos (60° 30').

(Given: 1° = 0.0175c, sin 60° = 0.8660)


Using differentials, find the approximate value of the following up to 3 places of decimal

`sqrt(0.6)`


Using differentials, find the approximate value of the following up to 3 places of decimal

`(26)^(1/3)`


Using differentials, find the approximate value of the following up to 3 places of decimal

`(0.0037)^(1/2)`


Using differentials, find the approximate value of the following up to 3 places of decimal

`(26.57)^(1/3)`


Find the approximate value of f (2.01), where f (x) = 4x2 + 5x + 2


Find the approximate value of f (5.001), where f (x) = x3 − 7x2 + 15.


Find the approximate change in the surface area of a cube of side x metres caused by decreasing the side by 1%


If the radius of a sphere is measured as 7 m with an error of 0.02m, then find the approximate error in calculating its volume.


Using differentials, find the approximate value of each of the following.

`(33)^(1/5)`


The pressure p and the volume v of a gas are connected by the relation pv1.4 = const. Find the percentage error in p corresponding to a decrease of 1/2% in v .


Show that the relative error in computing the volume of a sphere, due to an error in measuring the radius, is approximately equal to three times the relative error in the radius ?


Using differential, find the approximate value of the \[\sqrt{401}\] ?


Using differential, find the approximate value of the \[\left( 255 \right)^\frac{1}{4}\] ?


Using differential, find the approximate value of the \[\frac{1}{(2 . 002 )^2}\] ?


Using differential, find the approximate value of the \[\left( 66 \right)^\frac{1}{3}\] ?


Using differential, find the approximate value of the  \[\sqrt{37}\] ?


Using differential, find the approximate value of the \[\left( 82 \right)^\frac{1}{4}\] ?


Using differential, find the approximate value of the  \[\sqrt{0 . 082}\] ?


Using differential, find the approximate value of the \[{25}^\frac{1}{3}\] ?


Find the approximate value of f (2.01), where f (x) = 4x2 + 5x + 2 ?


Find the approximate value of log10 1005, given that log10 e = 0.4343 ?


Find the approximate change in the surface area of a cube of side x metres caused by decreasing the side by 1% ?


Find the approximate change in the value V of a cube of side x metres caused by increasing the side by 1% ?


If the percentage error in the radius of a sphere is α, find the percentage error in its volume ?


If the ratio of base radius and height of a cone is 1 : 2 and percentage error in radius is λ %, then the error in its volume is


If y = xn  then the ratio of relative errors in y and x is


Find the approximate values of : `sqrt(8.95)`


Find the approximate values of : 32.01, given that log 3 = 1.0986


Find the approximate values of : loge(101), given that loge10 = 2.3026.


Find the approximate values of : f(x) = x3 – 3x + 5 at x = 1.99.


Find the approximate values of : f(x) = x3 + 5x2 – 7x + 10 at x = 1.12.


Find the approximate value of the function f(x) = `sqrt(x^2 + 3x)` at x = 1.02.


Using differentiation, approximate value of f(x) = x2 - 2x + 1 at x = 2.99 is ______.


If y = x4 – 10 and if x changes from 2 to 1.99, what is the change in y ______.


The approximate change in volume of a cube of side `x` meters coverd by increasing the side by 3% is


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×