Advertisements
Advertisements
Question
The pressure P and volume V of a gas are connected by the relation PV1/4 = constant. The percentage increase in the pressure corresponding to a deminition of 1/2 % in the volume is
Options
\[\frac{1}{2} \%\]
\[\frac{1}{4} \%\]
\[\frac{1}{8} \%\]
none of these
Solution
\[\frac{1} {8} \]%
We have
\[\frac{\bigtriangleup V}{V} = \frac{- 1}{2} % \]
\[P V^\frac{1}{4} = \text { constant }= k \left( \text { say } \right)\]
\[\text { Taking log on both sides, we get }\]
\[\log \left( P V^\frac{1}{4} \right) = \log k\]
\[ \Rightarrow \log P + \frac{1}{4}\log V = \log k\]
\[\text { Differentiating both sides w . r . t . x, we get }\]
\[\frac{1}{P}\frac{dP}{dV} + \frac{1}{4V} = 0\]
\[ \Rightarrow \frac{dP}{P} = - \frac{dV}{4V} = - \frac{1}{4} \times \frac{- 1}{2} = \frac{1}{8}\]
\[\text { Hence, the increase in the pressure is } \frac{1}{8} \% .\]
APPEARS IN
RELATED QUESTIONS
Find the approximate value of cos (60° 30').
(Given: 1° = 0.0175c, sin 60° = 0.8660)
Using differentials, find the approximate value of the following up to 3 places of decimal
`sqrt(0.6)`
Using differentials, find the approximate value of the following up to 3 places of decimal
`(26)^(1/3)`
Using differentials, find the approximate value of the following up to 3 places of decimal
`(0.0037)^(1/2)`
Using differentials, find the approximate value of the following up to 3 places of decimal
`(26.57)^(1/3)`
Find the approximate value of f (2.01), where f (x) = 4x2 + 5x + 2
Find the approximate value of f (5.001), where f (x) = x3 − 7x2 + 15.
Find the approximate change in the surface area of a cube of side x metres caused by decreasing the side by 1%
If the radius of a sphere is measured as 7 m with an error of 0.02m, then find the approximate error in calculating its volume.
Using differentials, find the approximate value of each of the following.
`(33)^(1/5)`
The pressure p and the volume v of a gas are connected by the relation pv1.4 = const. Find the percentage error in p corresponding to a decrease of 1/2% in v .
Show that the relative error in computing the volume of a sphere, due to an error in measuring the radius, is approximately equal to three times the relative error in the radius ?
Using differential, find the approximate value of the \[\sqrt{401}\] ?
Using differential, find the approximate value of the \[\left( 255 \right)^\frac{1}{4}\] ?
Using differential, find the approximate value of the \[\frac{1}{(2 . 002 )^2}\] ?
Using differential, find the approximate value of the \[\left( 66 \right)^\frac{1}{3}\] ?
Using differential, find the approximate value of the \[\sqrt{37}\] ?
Using differential, find the approximate value of the \[\left( 82 \right)^\frac{1}{4}\] ?
Using differential, find the approximate value of the \[\sqrt{0 . 082}\] ?
Using differential, find the approximate value of the \[{25}^\frac{1}{3}\] ?
Find the approximate value of f (2.01), where f (x) = 4x2 + 5x + 2 ?
Find the approximate value of log10 1005, given that log10 e = 0.4343 ?
Find the approximate change in the surface area of a cube of side x metres caused by decreasing the side by 1% ?
Find the approximate change in the value V of a cube of side x metres caused by increasing the side by 1% ?
If the percentage error in the radius of a sphere is α, find the percentage error in its volume ?
If the ratio of base radius and height of a cone is 1 : 2 and percentage error in radius is λ %, then the error in its volume is
If y = xn then the ratio of relative errors in y and x is
Find the approximate values of : `sqrt(8.95)`
Find the approximate values of : 32.01, given that log 3 = 1.0986
Find the approximate values of : loge(101), given that loge10 = 2.3026.
Find the approximate values of : f(x) = x3 – 3x + 5 at x = 1.99.
Find the approximate values of : f(x) = x3 + 5x2 – 7x + 10 at x = 1.12.
Find the approximate value of the function f(x) = `sqrt(x^2 + 3x)` at x = 1.02.
Using differentiation, approximate value of f(x) = x2 - 2x + 1 at x = 2.99 is ______.
If y = x4 – 10 and if x changes from 2 to 1.99, what is the change in y ______.
The approximate change in volume of a cube of side `x` meters coverd by increasing the side by 3% is