मराठी

The Pressure P and Volume V of a Gas Are Connected by the Relation Pv1/4 = Constant. the Percentage Increase in the Pressure Corresponding to a Deminition of 1/2 % in the Volume is - Mathematics

Advertisements
Advertisements

प्रश्न

The pressure P and volume V of a gas are connected by the relation PV1/4 = constant. The percentage increase in the pressure corresponding to a deminition of 1/2 % in the volume is

 

पर्याय

  • \[\frac{1}{2} \%\]

  • \[\frac{1}{4} \%\]

  • \[\frac{1}{8} \%\]

  • none of these

MCQ

उत्तर

 \[\frac{1} {8} \]%

We have

\[\frac{\bigtriangleup V}{V} = \frac{- 1}{2} % \]

\[P V^\frac{1}{4} = \text { constant  }= k \left( \text { say } \right)\]

\[\text { Taking log on both sides, we get }\]

\[\log \left( P V^\frac{1}{4} \right) = \log k\]

\[ \Rightarrow \log P + \frac{1}{4}\log V = \log k\]

\[\text { Differentiating both sides w . r . t . x, we get }\]

\[\frac{1}{P}\frac{dP}{dV} + \frac{1}{4V} = 0\]

\[ \Rightarrow \frac{dP}{P} = - \frac{dV}{4V} = - \frac{1}{4} \times \frac{- 1}{2} = \frac{1}{8}\]

\[\text { Hence, the increase in the pressure is } \frac{1}{8} \% .\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 14: Differentials, Errors and Approximations - Exercise 14.3 [पृष्ठ १३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 14 Differentials, Errors and Approximations
Exercise 14.3 | Q 9 | पृष्ठ १३

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

Find the approximate value of ` sqrt8.95 `


Using differentials, find the approximate value of the following up to 3 places of decimal

`(255)^(1/4)`


Using differentials, find the approximate value of the following up to 3 places of decimal

`(82)^(1/4)`


Using differentials, find the approximate value of the following up to 3 places of decimal

`(32.15)^(1/5)`


Find the approximate change in the volume V of a cube of side x metres caused by increasing side by 1%.


If the radius of a sphere is measured as 7 m with an error of 0.02m, then find the approximate error in calculating its volume.


Using differentials, find the approximate value of each of the following.

`(33)^(1/5)`


The normal at the point (1, 1) on the curve 2y + x2 = 3 is

(A) x + y = 0

(B) x − = 0

(C) x + y + 1 = 0

(D) − y = 1


If y = sin x and x changes from π/2 to 22/14, what is the approximate change in y ?


The radius of a sphere shrinks from 10 to 9.8 cm. Find approximately the decrease in its volume ?


Using differential, find the approximate value of the \[\left( 15 \right)^\frac{1}{4}\] ?


Using differential, find the approximate value of the loge 10.02, it being given that loge10 = 2.3026 ?


Using differential, find the approximate value of the \[\frac{1}{\sqrt{25 . 1}}\] ?


Using differential, find the approximate value of the \[\cos\left( \frac{11\pi}{36} \right)\] ?


Using differential, find the approximate value of the \[\left( 29 \right)^\frac{1}{3}\] ?


Using differential, find the approximate value of the \[\left( 66 \right)^\frac{1}{3}\] ?


Using differential, find the approximate value of the \[\sqrt{49 . 5}\] ?


Using differential, find the approximate value of the \[\left( 1 . 999 \right)^5\] ?


Using differential, find the approximate value of the  \[\sqrt{0 . 082}\] ?


A piece of ice is in the form of a cube melts so that the percentage error in the edge of cube is a, then find the percentage error in its volume ?


If there is an error of a% in measuring the edge of a cube, then percentage error in its surface is


If an error of k% is made in measuring the radius of a sphere, then percentage error in its volume is


While measuring the side of an equilateral triangle an error of k % is made, the percentage error in its area is


If the ratio of base radius and height of a cone is 1 : 2 and percentage error in radius is λ %, then the error in its volume is


Find the approximate values of : (3.97)4 


Find the approximate values of (4.01)3 


Find the approximate values of : sin 61° , given that 1° = 0.0174c, `sqrt(3) = 1.732`


Find the approximate values of : tan (45° 40'), given that 1° = 0.0175°.


Find the approximate values of : cot–1 (0.999)


Find the approximate values of : tan–1 (1.001)


Find the approximate values of : f(x) = x3 + 5x2 – 7x + 10 at x = 1.12.


The approximate value of tan (44° 30°), given that 1° = 0.0175, is ______.


Find the approximate value of the function f(x) = `sqrt(x^2 + 3x)` at x = 1.02.


The approximate value of the function f(x) = x3 − 3x + 5 at x = 1.99 is ____________.


If y = x4 – 10 and if x changes from 2 to 1.99, what is the change in y ______.


If `(x) = 3x^2 + 15x + 5`, then the approximate value of `f(3.02)` is


Find the approximate value of tan−1 (1.002).
[Given: π = 3.1416]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×