Advertisements
Advertisements
प्रश्न
Using differential, find the approximate value of the \[\sqrt{49 . 5}\] ?
उत्तर
\[\text { Consider the function } y = f\left( x \right) = \sqrt{x} . \]
\[\text { Let }: \]
\[ x = 49\]
\[x + ∆ x = 49 . 5\]
\[\text { Then }, \]
\[ ∆ x = 0 . 5\]
\[\text { For } x = 49, \]
\[ y = \sqrt{49} = 7\]
\[\text { Let }: \]
\[ dx = ∆ x = 0 . 5\]
\[\text { Now }, y = \left( x \right)^\frac{1}{2} \]
\[ \Rightarrow \frac{dy}{dx} = \frac{1}{2\sqrt{x}}\]
\[ \Rightarrow \left( \frac{dy}{dx} \right)_{x = 49} = \frac{1}{14}\]
\[ \therefore ∆ y = dy = \frac{dy}{dx}dx = \frac{1}{14} \times 0 . 5 = 0 . 0357\]
\[ \Rightarrow ∆ y = 0 . 0357\]
\[ \therefore \sqrt{49 . 5} = y + ∆ y = 7 . 0357\]
APPEARS IN
संबंधित प्रश्न
Using differentials, find the approximate value of the following up to 3 places of decimal
`(0.999)^(1/10)`
Using differentials, find the approximate value of the following up to 3 places of decimal
`(0.0037)^(1/2)`
Using differentials, find the approximate value of the following up to 3 places of decimal
`(81.5)^(1/4)`
Using differentials, find the approximate value of the following up to 3 places of decimal
`(32.15)^(1/5)`
Find the approximate change in the surface area of a cube of side x metres caused by decreasing the side by 1%
If f (x) = 3x2 + 15x + 5, then the approximate value of f (3.02) is
A. 47.66
B. 57.66
C. 67.66
D. 77.66
The normal at the point (1, 1) on the curve 2y + x2 = 3 is
(A) x + y = 0
(B) x − y = 0
(C) x + y + 1 = 0
(D) x − y = 1
Find the approximate value of log10 (1016), given that log10e = 0⋅4343.
Find the percentage error in calculating the surface area of a cubical box if an error of 1% is made in measuring the lengths of edges of the cube ?
If there is an error of 0.1% in the measurement of the radius of a sphere, find approximately the percentage error in the calculation of the volume of the sphere ?
The pressure p and the volume v of a gas are connected by the relation pv1.4 = const. Find the percentage error in p corresponding to a decrease of 1/2% in v .
The height of a cone increases by k%, its semi-vertical angle remaining the same. What is the approximate percentage increase (i) in total surface area, and (ii) in the volume, assuming that k is small ?
Show that the relative error in computing the volume of a sphere, due to an error in measuring the radius, is approximately equal to three times the relative error in the radius ?
1 Using differential, find the approximate value of the following:
\[\sqrt{25 . 02}\]
Using differential, find the approximate value of the following: \[\left( 0 . 009 \right)^\frac{1}{3}\]
Using differential, find the approximate value of the following: \[\left( 0 . 007 \right)^\frac{1}{3}\]
Using differential, find the approximate value of the \[\sqrt{401}\] ?
Using differential, find the approximate value of the loge 10.02, it being given that loge10 = 2.3026 ?
Using differentials, find the approximate values of the cos 61°, it being given that sin60° = 0.86603 and 1° = 0.01745 radian ?
Using differential, find the approximate value of the \[\left( 66 \right)^\frac{1}{3}\] ?
Using differential, find the approximate value of the \[\left( \frac{17}{81} \right)^\frac{1}{4}\] ?
Using differential, find the approximate value of the \[\left( 33 \right)^\frac{1}{5}\] ?
Using differential, find the approximate value of the \[\left( 1 . 999 \right)^5\] ?
Find the approximate value of f (2.01), where f (x) = 4x2 + 5x + 2 ?
Find the approximate value of log10 1005, given that log10 e = 0.4343 ?
For the function y = x2, if x = 10 and ∆x = 0.1. Find ∆ y ?
The height of a cylinder is equal to the radius. If an error of α % is made in the height, then percentage error in its volume is
A sphere of radius 100 mm shrinks to radius 98 mm, then the approximate decrease in its volume is
For the function y = x2, if x = 10 and ∆x = 0.1. Find ∆y.
Find the approximate values of : `sqrt(8.95)`
Find the approximate values of : cot–1 (0.999)
Find the approximate values of : loge(9.01), given that log 3 = 1.0986.
Find the approximate values of : f(x) = x3 + 5x2 – 7x + 10 at x = 1.12.
Find the approximate value of tan−1 (1.002).
[Given: π = 3.1416]