मराठी

Using Differential, Find the Approximate Value of the ( 3 . 968 ) 3 2 ? - Mathematics

Advertisements
Advertisements

प्रश्न

Using differential, find the approximate value of the \[\left( 3 . 968 \right)^\frac{3}{2}\] ?

बेरीज

उत्तर

\[\text { Consider the function } y = f\left( x \right) = \left( x \right)^\frac{3}{2} . \]

\[\text { Let }: \]

\[ x = 4 \]

\[ x + ∆ x = 3 . 968\]

\[\text { Then }, \]

\[ ∆ x = - 0 . 032\]

\[\text { For } x = 4, \]

\[ y = \left( 4 \right)^\frac{3}{2} = 8\]

\[\text { Let }: \]

\[ dx = ∆ x = - 0 . 032\]

\[\text { Now }, y = \left( x \right)^\frac{3}{2} \]

\[ \Rightarrow \frac{dy}{dx} = \frac{3\sqrt{x}}{2}\]

\[ \Rightarrow \left( \frac{dy}{dx} \right)_{x = 4} = 3\]

\[ \therefore ∆ y = dy = \frac{dy}{dx}dx = 3 \times \left( - 0 . 032 \right) = - 0 . 096\]

\[ \Rightarrow ∆ y = - 0 . 096\]

\[ \therefore \left( 3 . 968 \right)^\frac{3}{2} = y + ∆ y = 7 . 904\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 14: Differentials, Errors and Approximations - Exercise 14.1 [पृष्ठ ९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 14 Differentials, Errors and Approximations
Exercise 14.1 | Q 9.27 | पृष्ठ ९

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

Using differentials, find the approximate value of the following up to 3 places of decimal

`(15)^(1/4)`


Using differentials, find the approximate value of the following up to 3 places of decimal

`(255)^(1/4)`


Using differentials, find the approximate value of the following up to 3 places of decimal

`(26.57)^(1/3)`


Using differentials, find the approximate value of the following up to 3 places of decimal

`(3.968)^(3/2)`


If f (x) = 3x2 + 15x + 5, then the approximate value of (3.02) is

A. 47.66

B. 57.66

C. 67.66

D. 77.66


The normal to the curve x2 = 4y passing (1, 2) is

(A) x + y = 3

(B) x − y = 3

(C) x + = 1

(D) x − = 1


Find the approximate change in the volume ‘V’ of a cube of side x metres caused by decreasing the side by 1%.


The pressure p and the volume v of a gas are connected by the relation pv1.4 = const. Find the percentage error in p corresponding to a decrease of 1/2% in v .


Show that the relative error in computing the volume of a sphere, due to an error in measuring the radius, is approximately equal to three times the relative error in the radius ?


Using differential, find the approximate value of the following:  \[\left( 0 . 009 \right)^\frac{1}{3}\]


Using differential, find the approximate value of the \[\left( 255 \right)^\frac{1}{4}\] ?


Using differential, find the approximate value of the \[\frac{1}{(2 . 002 )^2}\] ?


Using differential, find the approximate value of the \[\left( 80 \right)^\frac{1}{4}\] ?


Using differential, find the approximate value of the  \[\sqrt{0 . 48}\] ?


Using differential, find the approximate value of the \[\sqrt{36 . 6}\] ?


Using differential, find the approximate value of the \[\sqrt{49 . 5}\] ?


Using differential, find the approximate value of the \[\left( 1 . 999 \right)^5\] ?


If the radius of a sphere is measured as 9 cm with an error of 0.03 m, find the approximate error in calculating its surface area ?


Find the approximate change in the value V of a cube of side x metres caused by increasing the side by 1% ?


If the relative error in measuring the radius of a circular plane is α, find the relative error in measuring its area ?


If there is an error of 2% in measuring the length of a simple pendulum, then percentage error in its period is


If the ratio of base radius and height of a cone is 1 : 2 and percentage error in radius is λ %, then the error in its volume is


The pressure P and volume V of a gas are connected by the relation PV1/4 = constant. The percentage increase in the pressure corresponding to a deminition of 1/2 % in the volume is

 


Find the approximate value of f(3.02), up to 2 places of decimal, where f(x) = 3x2 + 5x + 3.


Find the approximate values of : e0.995, given that e = 2.7183.


Find the approximate values of : loge(101), given that loge10 = 2.3026.


Find the approximate values of : f(x) = x3 – 3x + 5 at x = 1.99.


The approximate value of tan (44° 30°), given that 1° = 0.0175, is ______.


Find the approximate value of the function f(x) = `sqrt(x^2 + 3x)` at x = 1.02.


Solve the following : Find the approximate value of cos–1 (0.51), given π = 3.1416, `(2)/sqrt(3)` = 1.1547.


Find the approximate value of (1.999)5.


Find the approximate volume of metal in a hollow spherical shell whose internal and external radii are 3 cm and 3.0005 cm respectively


If y = x4 – 10 and if x changes from 2 to 1.99, what is the change in y ______.


Find the approximate value of f(3.02), where f(x) = 3x2 + 5x + 3


If the radius of a sphere is measured as 9 m with an error of 0.03 m. the find the approximate error in calculating its surface area


The approximate change in volume of a cube of side `x` meters coverd by increasing the side by 3% is


The approximate value of f(x) = x3 + 5x2 – 7x + 9 at x = 1.1 is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×