Advertisements
Advertisements
प्रश्न
Find the approximate change in the value V of a cube of side x metres caused by increasing the side by 1% ?
उत्तर
\[\text { Volume of the cube,} V = x^3 \]
\[\text { We have }\]
\[ ∆ x = 0 . 01x\]
\[\frac{dV}{dx} = 3 x^2 \]
\[ \Rightarrow ∆ V = dV = \frac{dV}{dx}dx = 3 x^2 \times 0 . 01x = 0 . 03 x^3 \]
\[\text { Hence, the approximate change in the value V of the cube is } 0 . 03 x^3 m^3 . \]
\[\text{Disclaimer: This solution has been created according to the question given in the book . However, the solution in the book is incorrect } . \]
APPEARS IN
संबंधित प्रश्न
Using differentials, find the approximate value of the following up to 3 places of decimal
`sqrt(49.5)`
Using differentials, find the approximate value of the following up to 3 places of decimal
`(81.5)^(1/4)`
Using differentials, find the approximate value of the following up to 3 places of decimal
`(3.968)^(3/2)`
Using differentials, find the approximate value of each of the following.
`(17/81)^(1/4)`
The normal to the curve x2 = 4y passing (1, 2) is
(A) x + y = 3
(B) x − y = 3
(C) x + y = 1
(D) x − y = 1
The points on the curve 9y2 = x3, where the normal to the curve makes equal intercepts with the axes are
(A)`(4, +- 8/3)`
(B) `(4,(-8)/3)`
(C)`(4, +- 3/8)`
(D) `(+-4, 3/8)`
The radius of a sphere shrinks from 10 to 9.8 cm. Find approximately the decrease in its volume ?
Show that the relative error in computing the volume of a sphere, due to an error in measuring the radius, is approximately equal to three times the relative error in the radius ?
Using differential, find the approximate value of the \[\frac{1}{(2 . 002 )^2}\] ?
Using differential, find the approximate value of the log10 10.1, it being given that log10e = 0.4343 ?
Using differentials, find the approximate values of the cos 61°, it being given that sin60° = 0.86603 and 1° = 0.01745 radian ?
Using differential, find the approximate value of the \[\left( 80 \right)^\frac{1}{4}\] ?
Using differential, find the approximate value of the \[\sqrt{0 . 48}\] ?
Using differential, find the approximate value of the \[\left( 33 \right)^\frac{1}{5}\] ?
Using differential, find the approximate value of the \[\sqrt{49 . 5}\] ?
Find the approximate value of f (2.01), where f (x) = 4x2 + 5x + 2 ?
If the radius of a sphere is measured as 9 cm with an error of 0.03 m, find the approximate error in calculating its surface area ?
Find the approximate change in the surface area of a cube of side x metres caused by decreasing the side by 1% ?
If the radius of a sphere is measured as 7 m with an error of 0.02 m, find the approximate error in calculating its volume ?
If there is an error of a% in measuring the edge of a cube, then percentage error in its surface is
If an error of k% is made in measuring the radius of a sphere, then percentage error in its volume is
If loge 4 = 1.3868, then loge 4.01 =
The pressure P and volume V of a gas are connected by the relation PV1/4 = constant. The percentage increase in the pressure corresponding to a deminition of 1/2 % in the volume is
If y = xn then the ratio of relative errors in y and x is
The approximate value of (33)1/5 is
Find the approximate values of : (3.97)4
Find the approximate values of : sin (29° 30'), given that 1°= 0.0175°, `sqrt(3) = 1.732`
Find the approximate values of : tan (45° 40'), given that 1° = 0.0175°.
Find the approximate values of : tan–1 (1.001)
Find the approximate values of : e0.995, given that e = 2.7183.
Find the approximate values of : e2.1, given that e2 = 7.389
Find the approximate values of : loge(9.01), given that log 3 = 1.0986.
The approximate value of tan (44° 30°), given that 1° = 0.0175, is ______.
Find the approximate volume of metal in a hollow spherical shell whose internal and external radii are 3 cm and 3.0005 cm respectively
If the radius of a sphere is measured as 9 m with an error of 0.03 m. the find the approximate error in calculating its surface area
Find the approximate value of sin (30° 30′). Give that 1° = 0.0175c and cos 30° = 0.866
Find the approximate value of tan−1 (1.002).
[Given: π = 3.1416]