मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता १२ वी

Find the approximate values of : tan (45° 40'), given that 1° = 0.0175°. - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Find the approximate values of : tan (45° 40'), given that 1° = 0.0175°.

बेरीज

उत्तर

Let f(x) = tan x

Then f'(x) = `d/dx(tanx) = sec^2x`

Take a = 45°

= `pi/(4)`
and
h = 40'

= `(40/60 xx 0.0175)^c`

= 0.01167c

Then f(a) = `f(pi/4)`

= `tan  pi/(4)`
= 1
and
f'(a) = `f'(pi/4)`

= `sec^2  pi/(4)`

= `(sqrt(2))^2`
= 2
The formula for approximation is
f(a + h) ≑ f(a) + h.f'(a)
∴ tan(45° 40')
= f(45° 40')

= `f(pi/4 + 0.01167)`

≑ `f(pi/4) + (0.01167).f'(pi/4)`

≑ 1 + 0.01167 x 2 
= 1 + 0.02334
= 1.02334
∴ tan (45° 40') ≑ 1.02334.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 2: Applications of Derivatives - Exercise 2.2 [पृष्ठ ७५]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
पाठ 2 Applications of Derivatives
Exercise 2.2 | Q 2.4 | पृष्ठ ७५

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

Find the approximate value of ` sqrt8.95 `


Find the approximate value of cos (60° 30').

(Given: 1° = 0.0175c, sin 60° = 0.8660)


Using differentials, find the approximate value of the following up to 3 places of decimal

`sqrt(25.3)`


Using differentials, find the approximate value of the following up to 3 places of decimal

`(0.009)^(1/3)`


Using differentials, find the approximate value of the following up to 3 places of decimal

`(0.999)^(1/10)`


Using differentials, find the approximate value of the following up to 3 places of decimal

`(15)^(1/4)`


Using differentials, find the approximate value of the following up to 3 places of decimal

`(26)^(1/3)`


Using differentials, find the approximate value of the following up to 3 places of decimal

`(82)^(1/4)`


Using differentials, find the approximate value of the following up to 3 places of decimal

`(401)^(1/2)`


Using differentials, find the approximate value of the following up to 3 places of decimal

`(0.0037)^(1/2)`


Using differentials, find the approximate value of the following up to 3 places of decimal

`(26.57)^(1/3)`


Using differentials, find the approximate value of the following up to 3 places of decimal

`(81.5)^(1/4)`


If the radius of a sphere is measured as 9 m with an error of 0.03 m, then find the approximate error in calculating in surface area


The approximate change in the volume of a cube of side x metres caused by increasing the side by 3% is

A. 0.06 x3 m3 

B. 0.6 x3 m3

C. 0.09 x3 m3

D. 0.9 x3 m3


Using differentials, find the approximate value of each of the following.

`(33)^(1/5)`


The normal to the curve x2 = 4y passing (1, 2) is

(A) x + y = 3

(B) x − y = 3

(C) x + = 1

(D) x − = 1


If there is an error of 0.1% in the measurement of the radius of a sphere, find approximately the percentage error in the calculation of the volume of the sphere ?


The pressure p and the volume v of a gas are connected by the relation pv1.4 = const. Find the percentage error in p corresponding to a decrease of 1/2% in v .


The height of a cone increases by k%, its semi-vertical angle remaining the same. What is the approximate percentage increase (i) in total surface area, and (ii) in the volume, assuming that k is small ?


Show that the relative error in computing the volume of a sphere, due to an error in measuring the radius, is approximately equal to three times the relative error in the radius ?


Using differential, find the approximate value of the following: \[\left( 0 . 007 \right)^\frac{1}{3}\]


Using differential, find the approximate value of the \[\left( 15 \right)^\frac{1}{4}\] ?


Using differentials, find the approximate values of the cos 61°, it being given that sin60° = 0.86603 and 1° = 0.01745 radian ?


Using differential, find the approximate value of the \[\left( 80 \right)^\frac{1}{4}\] ?


Using differential, find the approximate value of the \[\left( 66 \right)^\frac{1}{3}\] ?


Using differential, find the approximate value of the \[\sqrt{26}\] ?


Using differential, find the approximate value of the  \[\sqrt{0 . 48}\] ?


Using differential, find the approximate value of the \[\left( 82 \right)^\frac{1}{4}\] ?


Using differential, find the approximate value of the \[\left( 33 \right)^\frac{1}{5}\] ?


Using differential, find the approximate value of the \[\sqrt{36 . 6}\] ?


Using differential, find the approximate value of the \[\sqrt{49 . 5}\] ?


Using differential, find the approximate value of the \[\left( 1 . 999 \right)^5\] ?


Find the approximate value of log10 1005, given that log10 e = 0.4343 ?


Find the approximate change in the surface area of a cube of side x metres caused by decreasing the side by 1% ?


Find the approximate change in the value V of a cube of side x metres caused by increasing the side by 1% ?


If y = loge x, then find ∆y when x = 3 and ∆x = 0.03 ?


A piece of ice is in the form of a cube melts so that the percentage error in the edge of cube is a, then find the percentage error in its volume ?


If there is an error of 2% in measuring the length of a simple pendulum, then percentage error in its period is


If there is an error of a% in measuring the edge of a cube, then percentage error in its surface is


If an error of k% is made in measuring the radius of a sphere, then percentage error in its volume is


While measuring the side of an equilateral triangle an error of k % is made, the percentage error in its area is


If loge 4 = 1.3868, then loge 4.01 =


If the ratio of base radius and height of a cone is 1 : 2 and percentage error in radius is λ %, then the error in its volume is


The pressure P and volume V of a gas are connected by the relation PV1/4 = constant. The percentage increase in the pressure corresponding to a deminition of 1/2 % in the volume is

 


If y = xn  then the ratio of relative errors in y and x is


The approximate value of (33)1/5 is


The circumference of a circle is measured as 28 cm with an error of 0.01 cm. The percentage error in the area is

 


Find the approximate value of f(3.02), up to 2 places of decimal, where f(x) = 3x2 + 5x + 3.


Find the approximate values of : `root(3)(28)`


Find the approximate values of : `root(5)(31.98)`


Find the approximate values of (4.01)3 


Find the approximate values of : cos(60° 30°), given that 1° = 0.0175°, `sqrt(3) = 1.732`


Find the approximate values of : tan–1 (1.001)


Find the approximate values of : e0.995, given that e = 2.7183.


Find the approximate values of : f(x) = x3 – 3x + 5 at x = 1.99.


Find the approximate value of the function f(x) = `sqrt(x^2 + 3x)` at x = 1.02.


Solve the following : Find the approximate value of cos–1 (0.51), given π = 3.1416, `(2)/sqrt(3)` = 1.1547.


Using differentiation, approximate value of f(x) = x2 - 2x + 1 at x = 2.99 is ______.


If y = x4 – 10 and if x changes from 2 to 1.99, what is the change in y ______.


Find the approximate value of f(3.02), where f(x) = 3x2 + 5x + 3


If `(x) = 3x^2 + 15x + 5`, then the approximate value of `f(3.02)` is


The approximate change in volume of a cube of side `x` meters coverd by increasing the side by 3% is


Find the approximate value of sin (30° 30′). Give that 1° = 0.0175c and cos 30° = 0.866


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×