Advertisements
Advertisements
प्रश्न
If there is an error of 0.1% in the measurement of the radius of a sphere, find approximately the percentage error in the calculation of the volume of the sphere ?
उत्तर
Let x be the radius and y be the volume of the sphere.
\[y = \frac{4}{3}\pi x^3 \]
\[\text { Let } ∆ x \text { be the error in the radius and } ∆ \text { y be the error in the volume }. \]
\[\text { Then,} \frac{∆ x}{x} \times 100 = 0 . 1\]
\[ \Rightarrow \frac{dx}{x} = \frac{1}{1000}\]
\[\text { Now,} y = \frac{4}{3}\pi x^3 \]
\[ \Rightarrow \frac{dy}{dx} = 4 \pi x^2 \]
\[ \Rightarrow dy = 4 \pi x^2 dx\]
\[ \Rightarrow \frac{dy}{y} = \frac{4 \pi x^2 dx}{\frac{4}{3}\pi x^3} = \frac{3}{x}dx\]
\[ \Rightarrow \frac{dy}{y} = \frac{3}{1000}\]
\[ \Rightarrow \frac{∆ y}{y} \times 100 = 0 . 3\]
Hence, the percentage error in the calculation of the volume of the sphere is 0.3.
APPEARS IN
संबंधित प्रश्न
Find the approximate value of cos (60° 30').
(Given: 1° = 0.0175c, sin 60° = 0.8660)
Using differentials, find the approximate value of the following up to 3 places of decimal
`sqrt(0.6)`
Using differentials, find the approximate value of the following up to 3 places of decimal
`(0.009)^(1/3)`
Using differentials, find the approximate value of the following up to 3 places of decimal
`(81.5)^(1/4)`
If the radius of a sphere is measured as 7 m with an error of 0.02m, then find the approximate error in calculating its volume.
If the radius of a sphere is measured as 9 m with an error of 0.03 m, then find the approximate error in calculating in surface area
Using differentials, find the approximate value of each of the following.
`(33)^(1/5)`
The normal at the point (1, 1) on the curve 2y + x2 = 3 is
(A) x + y = 0
(B) x − y = 0
(C) x + y + 1 = 0
(D) x − y = 1
Find the approximate change in the volume ‘V’ of a cube of side x metres caused by decreasing the side by 1%.
If y = sin x and x changes from π/2 to 22/14, what is the approximate change in y ?
The height of a cone increases by k%, its semi-vertical angle remaining the same. What is the approximate percentage increase (i) in total surface area, and (ii) in the volume, assuming that k is small ?
1 Using differential, find the approximate value of the following:
\[\sqrt{25 . 02}\]
Using differential, find the approximate value of the \[\sqrt{401}\] ?
Using differential, find the approximate value of the loge 4.04, it being given that log104 = 0.6021 and log10e = 0.4343 ?
Using differential, find the approximate value of the log10 10.1, it being given that log10e = 0.4343 ?
Using differential, find the approximate value of the \[\sin\left( \frac{22}{14} \right)\] ?
Using differential, find the approximate value of the \[\sqrt{37}\] ?
Using differential, find the approximate value of the \[\sqrt{36 . 6}\] ?
Using differential, find the approximate value of the \[\sqrt{49 . 5}\] ?
Using differential, find the approximate value of the \[\left( 1 . 999 \right)^5\] ?
Using differential, find the approximate value of the \[\sqrt{0 . 082}\] ?
Find the approximate value of log10 1005, given that log10 e = 0.4343 ?
If the percentage error in the radius of a sphere is α, find the percentage error in its volume ?
If an error of k% is made in measuring the radius of a sphere, then percentage error in its volume is
The height of a cylinder is equal to the radius. If an error of α % is made in the height, then percentage error in its volume is
A sphere of radius 100 mm shrinks to radius 98 mm, then the approximate decrease in its volume is
Find the approximate value of f(3.02), up to 2 places of decimal, where f(x) = 3x2 + 5x + 3.
Find the approximate values of : `sqrt(8.95)`
Find the approximate values of : `root(3)(28)`
Find the approximate values of : `root(5)(31.98)`
Find the approximate values of : 32.01, given that log 3 = 1.0986
The approximate value of tan (44° 30°), given that 1° = 0.0175, is ______.
Find the approximate value of (1.999)5.
If y = x4 – 10 and if x changes from 2 to 1.99, what is the change in y ______.
If the radius of a sphere is measured as 9 m with an error of 0.03 m. the find the approximate error in calculating its surface area
Find the approximate value of tan−1 (1.002).
[Given: π = 3.1416]