Advertisements
Advertisements
प्रश्न
Using differential, find the approximate value of the loge 4.04, it being given that log104 = 0.6021 and log10e = 0.4343 ?
उत्तर
\[\text{ Consider the function } y = f\left( x \right) = \log_e x . \]
\[\text { Let }: \]
\[ x = 4 \]
\[x + ∆ x = 4 . 04\]
\[\text { Then }, \]
\[ ∆ x = 0 . 04\]
\[\text { For } x = 4, \]
\[y = \log_e 4 = \frac{\log_{10} 4}{\log_{10} e} = \frac{0 . 6021}{0 . 4343} = 1 . 386368\]
\[\text { Let }: \]
\[ dx = ∆ x = 0 . 04\]
\[\text { Now }, y = \log_e x\]
\[ \Rightarrow \frac{dy}{dx} = \frac{1}{x}\]
\[ \Rightarrow \left( \frac{dy}{dx} \right)_{x = 4} = \frac{1}{4}\]
\[ \therefore ∆ y = dy = \frac{dy}{dx}dx = \frac{1}{4} \times 0 . 04 = 0 . 01\]
\[ \Rightarrow ∆ y = 0 . 01\]
\[ \therefore \log_e 4 . 04 = y + ∆ y = 1 . 396368\]
APPEARS IN
संबंधित प्रश्न
Using differentials, find the approximate value of the following up to 3 places of decimal
`sqrt(25.3)`
Using differentials, find the approximate value of the following up to 3 places of decimal
`(15)^(1/4)`
Using differentials, find the approximate value of the following up to 3 places of decimal
`(255)^(1/4)`
Using differentials, find the approximate value of the following up to 3 places of decimal
`(82)^(1/4)`
Using differentials, find the approximate value of the following up to 3 places of decimal
`(0.0037)^(1/2)`
Find the approximate value of f (5.001), where f (x) = x3 − 7x2 + 15.
The radius of a sphere shrinks from 10 to 9.8 cm. Find approximately the decrease in its volume ?
The pressure p and the volume v of a gas are connected by the relation pv1.4 = const. Find the percentage error in p corresponding to a decrease of 1/2% in v .
Using differential, find the approximate value of the following: \[\left( 0 . 007 \right)^\frac{1}{3}\]
Using differential, find the approximate value of the \[\sqrt{401}\] ?
Using differential, find the approximate value of the \[\left( 15 \right)^\frac{1}{4}\] ?
Using differential, find the approximate value of the loge 10.02, it being given that loge10 = 2.3026 ?
Using differential, find the approximate value of the \[\frac{1}{\sqrt{25 . 1}}\] ?
Using differential, find the approximate value of the \[\cos\left( \frac{11\pi}{36} \right)\] ?
Using differential, find the approximate value of the \[\sqrt{0 . 48}\] ?
Using differential, find the approximate value of the \[\sqrt{49 . 5}\] ?
Using differential, find the approximate value of the \[\left( 3 . 968 \right)^\frac{3}{2}\] ?
Find the approximate change in the surface area of a cube of side x metres caused by decreasing the side by 1% ?
If the radius of a sphere is measured as 7 m with an error of 0.02 m, find the approximate error in calculating its volume ?
For the function y = x2, if x = 10 and ∆x = 0.1. Find ∆ y ?
If there is an error of 2% in measuring the length of a simple pendulum, then percentage error in its period is
The height of a cylinder is equal to the radius. If an error of α % is made in the height, then percentage error in its volume is
The approximate value of (33)1/5 is
Find the approximate value of f(3.02), up to 2 places of decimal, where f(x) = 3x2 + 5x + 3.
Find the approximate values of : `root(3)(28)`
Find the approximate values of : cos(60° 30°), given that 1° = 0.0175°, `sqrt(3) = 1.732`
Find the approximate values of : tan–1(0.999)
Find the approximate values of : tan–1 (1.001)
Find the approximate values of : e0.995, given that e = 2.7183.
Find the approximate values of : loge(101), given that loge10 = 2.3026.
The approximate value of the function f(x) = x3 − 3x + 5 at x = 1.99 is ____________.
If `(x) = 3x^2 + 15x + 5`, then the approximate value of `f(3.02)` is
The approximate change in volume of a cube of side `x` meters coverd by increasing the side by 3% is
Find the approximate value of sin (30° 30′). Give that 1° = 0.0175c and cos 30° = 0.866