मराठी

Using Differential, Find the Approximate Value of the Loge 4.04, It Being Given that Log104 = 0.6021 and Log10e = 0.4343 ? - Mathematics

Advertisements
Advertisements

प्रश्न

Using differential, find the approximate value of the loge 4.04, it being given that log104 = 0.6021 and log10e = 0.4343 ?

बेरीज

उत्तर

\[\text{ Consider the function } y = f\left( x \right) = \log_e x . \]

\[\text { Let }: \]

\[ x = 4 \]

\[x + ∆ x = 4 . 04\]

\[\text { Then }, \]

\[ ∆ x = 0 . 04\]

\[\text { For } x = 4, \]

\[y = \log_e 4 = \frac{\log_{10} 4}{\log_{10} e} = \frac{0 . 6021}{0 . 4343} = 1 . 386368\]

\[\text { Let }: \]

\[ dx = ∆ x = 0 . 04\]

\[\text { Now }, y = \log_e x\]

\[ \Rightarrow \frac{dy}{dx} = \frac{1}{x}\]

\[ \Rightarrow \left( \frac{dy}{dx} \right)_{x = 4} = \frac{1}{4}\]

\[ \therefore ∆ y = dy = \frac{dy}{dx}dx = \frac{1}{4} \times 0 . 04 = 0 . 01\]

\[ \Rightarrow ∆ y = 0 . 01\]

\[ \therefore \log_e 4 . 04 = y + ∆ y = 1 . 396368\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 14: Differentials, Errors and Approximations - Exercise 14.1 [पृष्ठ ९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 14 Differentials, Errors and Approximations
Exercise 14.1 | Q 9.08 | पृष्ठ ९

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

Using differentials, find the approximate value of the following up to 3 places of decimal

`sqrt(25.3)`


Using differentials, find the approximate value of the following up to 3 places of decimal

`(15)^(1/4)`


Using differentials, find the approximate value of the following up to 3 places of decimal

`(255)^(1/4)`


Using differentials, find the approximate value of the following up to 3 places of decimal

`(82)^(1/4)`


Using differentials, find the approximate value of the following up to 3 places of decimal

`(0.0037)^(1/2)`


Find the approximate value of f (5.001), where f (x) = x3 − 7x2 + 15.


The radius of a sphere shrinks from 10 to 9.8 cm. Find approximately the decrease in its volume ?


The pressure p and the volume v of a gas are connected by the relation pv1.4 = const. Find the percentage error in p corresponding to a decrease of 1/2% in v .


Using differential, find the approximate value of the following: \[\left( 0 . 007 \right)^\frac{1}{3}\]


Using differential, find the approximate value of the \[\sqrt{401}\] ?


Using differential, find the approximate value of the \[\left( 15 \right)^\frac{1}{4}\] ?


Using differential, find the approximate value of the loge 10.02, it being given that loge10 = 2.3026 ?


Using differential, find the approximate value of the \[\frac{1}{\sqrt{25 . 1}}\] ?


Using differential, find the approximate value of the \[\cos\left( \frac{11\pi}{36} \right)\] ?


Using differential, find the approximate value of the  \[\sqrt{0 . 48}\] ?


Using differential, find the approximate value of the \[\sqrt{49 . 5}\] ?


Using differential, find the approximate value of the \[\left( 3 . 968 \right)^\frac{3}{2}\] ?


Find the approximate change in the surface area of a cube of side x metres caused by decreasing the side by 1% ?


If the radius of a sphere is measured as 7 m with an error of 0.02 m, find the approximate error in calculating its volume ?


For the function y = x2, if x = 10 and ∆x = 0.1. Find ∆ y ?


If there is an error of 2% in measuring the length of a simple pendulum, then percentage error in its period is


The height of a cylinder is equal to the radius. If an error of α % is made in the height, then percentage error in its volume is


The approximate value of (33)1/5 is


Find the approximate value of f(3.02), up to 2 places of decimal, where f(x) = 3x2 + 5x + 3.


Find the approximate values of : `root(3)(28)`


Find the approximate values of : cos(60° 30°), given that 1° = 0.0175°, `sqrt(3) = 1.732`


Find the approximate values of : tan–1(0.999)


Find the approximate values of : tan–1 (1.001)


Find the approximate values of : e0.995, given that e = 2.7183.


Find the approximate values of : loge(101), given that loge10 = 2.3026.


The approximate value of the function f(x) = x3 − 3x + 5 at x = 1.99 is ____________.


If `(x) = 3x^2 + 15x + 5`, then the approximate value of `f(3.02)` is


The approximate change in volume of a cube of side `x` meters coverd by increasing the side by 3% is


Find the approximate value of sin (30° 30′). Give that 1° = 0.0175c and cos 30° = 0.866


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×