Advertisements
Advertisements
प्रश्न
Using differential, find the approximate value of the \[\frac{1}{\sqrt{25 . 1}}\] ?
उत्तर
\[\text { Consider the function } y = f\left( x \right) = \frac{1}{\sqrt{x}} . \]
\[\text { Let }: \]
\[ x = 25 \]
\[x + ∆ x = 25 . 1\]
\[\text { Then }, \]
\[ ∆ x = 0 . 1\]
\[\text { For } x = , \]
\[ y = \frac{1}{\sqrt{25}} = 0 . 2\]
\[\text { Let }: \]
\[ dx = ∆ x = 0 . 1\]
\[\text { Now,} y = \frac{1}{\sqrt{x}}\]
\[ \Rightarrow \frac{dy}{dx} = \frac{- 1}{2 \left( x \right)^\frac{3}{2}}\]
\[ \Rightarrow \left( \frac{dy}{dx} \right)_{x = 25} = - 0 . 004\]
\[ \therefore ∆ y = dy = \frac{dy}{dx}dx = - 0 . 004 \times 0 . 1 = - 0 . 0004\]
\[ \Rightarrow ∆ y = - 0 . 0004\]
\[ \therefore \frac{1}{\sqrt{25 . 1}} = y + ∆ y = 0 . 1996\]
APPEARS IN
संबंधित प्रश्न
Find the approximate value of ` sqrt8.95 `
Using differentials, find the approximate value of the following up to 3 places of decimal
`sqrt(0.6)`
Using differentials, find the approximate value of the following up to 3 places of decimal
`(255)^(1/4)`
Using differentials, find the approximate value of the following up to 3 places of decimal
`(401)^(1/2)`
Using differentials, find the approximate value of the following up to 3 places of decimal
`(0.0037)^(1/2)`
Using differentials, find the approximate value of the following up to 3 places of decimal
`(26.57)^(1/3)`
Using differentials, find the approximate value of the following up to 3 places of decimal
`(81.5)^(1/4)`
Using differentials, find the approximate value of the following up to 3 places of decimal
`(32.15)^(1/5)`
Find the approximate value of f (2.01), where f (x) = 4x2 + 5x + 2
Find the approximate change in the surface area of a cube of side x metres caused by decreasing the side by 1%
If the radius of a sphere is measured as 7 m with an error of 0.02m, then find the approximate error in calculating its volume.
The normal to the curve x2 = 4y passing (1, 2) is
(A) x + y = 3
(B) x − y = 3
(C) x + y = 1
(D) x − y = 1
The points on the curve 9y2 = x3, where the normal to the curve makes equal intercepts with the axes are
(A)`(4, +- 8/3)`
(B) `(4,(-8)/3)`
(C)`(4, +- 3/8)`
(D) `(+-4, 3/8)`
The radius of a sphere shrinks from 10 to 9.8 cm. Find approximately the decrease in its volume ?
Find the percentage error in calculating the surface area of a cubical box if an error of 1% is made in measuring the lengths of edges of the cube ?
The pressure p and the volume v of a gas are connected by the relation pv1.4 = const. Find the percentage error in p corresponding to a decrease of 1/2% in v .
Show that the relative error in computing the volume of a sphere, due to an error in measuring the radius, is approximately equal to three times the relative error in the radius ?
Using differential, find the approximate value of the following: \[\left( 0 . 007 \right)^\frac{1}{3}\]
Using differential, find the approximate value of the \[\left( 15 \right)^\frac{1}{4}\] ?
Using differential, find the approximate value of the \[\frac{1}{(2 . 002 )^2}\] ?
Using differential, find the approximate value of the \[\sqrt{0 . 48}\] ?
Using differential, find the approximate value of the \[\left( \frac{17}{81} \right)^\frac{1}{4}\] ?
Using differential, find the approximate value of the \[\sqrt{36 . 6}\] ?
Using differential, find the approximate value of the \[\sqrt{49 . 5}\] ?
Using differential, find the approximate value of the \[\left( 1 . 999 \right)^5\] ?
Find the approximate change in the surface area of a cube of side x metres caused by decreasing the side by 1% ?
If the percentage error in the radius of a sphere is α, find the percentage error in its volume ?
If there is an error of 2% in measuring the length of a simple pendulum, then percentage error in its period is
If an error of k% is made in measuring the radius of a sphere, then percentage error in its volume is
The approximate value of (33)1/5 is
Find the approximate values of : (3.97)4
Find the approximate values of (4.01)3
Find the approximate values of : cot–1 (0.999)
Find the approximate values of : tan–1 (1.001)
Find the approximate values of : 32.01, given that log 3 = 1.0986
Find the approximate values of : loge(9.01), given that log 3 = 1.0986.
Find the approximate value of the function f(x) = `sqrt(x^2 + 3x)` at x = 1.02.
If `(x) = 3x^2 + 15x + 5`, then the approximate value of `f(3.02)` is
The approximate change in volume of a cube of side `x` meters coverd by increasing the side by 3% is
The approximate value of f(x) = x3 + 5x2 – 7x + 9 at x = 1.1 is ______.