Advertisements
Advertisements
प्रश्न
Using differentials, find the approximate values of the cos 61°, it being given that sin60° = 0.86603 and 1° = 0.01745 radian ?
उत्तर
\[\text { Consider the function }y = f\left( x \right) = \cos x^\circ . \]
\[\text { Let }: \]
\[ x = 60^\circ \]
\[ x + ∆ x = 61^\circ\]
\[\text { Then }, \]
\[ ∆ x = 1^\circ = 0 . 01745\]
\[\text { For } x = 60^\circ, \]
\[ y = \cos 60^\circ = 0 . 5\]
\[\text { Let }: \]
\[ dx = ∆ x = 0 . 01745\]
\[\text { Now }, y = \cos x\]
\[ \Rightarrow \frac{dy}{dx} = - \sin x\]
\[ \Rightarrow \left( \frac{dy}{dx} \right)_{x = 60} = - 0 . 86603\]
\[ \therefore ∆ y = dy = \frac{dy}{dx}dx = - 0 . 86603 \times 0 . 01745 = - 0 . 01511\]
\[ \Rightarrow ∆ y = - 0 . 01511\]
\[ \therefore \cos 61^\circ = y + ∆ y = 0 . 48488 \approx 0 . 48489\]
APPEARS IN
संबंधित प्रश्न
Using differentials, find the approximate value of the following up to 3 places of decimal
`sqrt(25.3)`
Using differentials, find the approximate value of the following up to 3 places of decimal
`(255)^(1/4)`
Using differentials, find the approximate value of the following up to 3 places of decimal
`(401)^(1/2)`
Using differentials, find the approximate value of the following up to 3 places of decimal
`(0.0037)^(1/2)`
Find the approximate change in the volume V of a cube of side x metres caused by increasing side by 1%.
If the radius of a sphere is measured as 9 m with an error of 0.03 m, then find the approximate error in calculating in surface area
Find the approximate change in the volume ‘V’ of a cube of side x metres caused by decreasing the side by 1%.
If y = sin x and x changes from π/2 to 22/14, what is the approximate change in y ?
The height of a cone increases by k%, its semi-vertical angle remaining the same. What is the approximate percentage increase (i) in total surface area, and (ii) in the volume, assuming that k is small ?
1 Using differential, find the approximate value of the following:
\[\sqrt{25 . 02}\]
Using differential, find the approximate value of the loge 10.02, it being given that loge10 = 2.3026 ?
Using differential, find the approximate value of the log10 10.1, it being given that log10e = 0.4343 ?
Using differential, find the approximate value of the \[\left( 66 \right)^\frac{1}{3}\] ?
Using differential, find the approximate value of the \[\left( 3 . 968 \right)^\frac{3}{2}\] ?
Find the approximate value of f (2.01), where f (x) = 4x2 + 5x + 2 ?
Find the approximate value of f (5.001), where f (x) = x3 − 7x2 + 15 ?
If the relative error in measuring the radius of a circular plane is α, find the relative error in measuring its area ?
A piece of ice is in the form of a cube melts so that the percentage error in the edge of cube is a, then find the percentage error in its volume ?
If an error of k% is made in measuring the radius of a sphere, then percentage error in its volume is
The height of a cylinder is equal to the radius. If an error of α % is made in the height, then percentage error in its volume is
While measuring the side of an equilateral triangle an error of k % is made, the percentage error in its area is
A sphere of radius 100 mm shrinks to radius 98 mm, then the approximate decrease in its volume is
The pressure P and volume V of a gas are connected by the relation PV1/4 = constant. The percentage increase in the pressure corresponding to a deminition of 1/2 % in the volume is
For the function y = x2, if x = 10 and ∆x = 0.1. Find ∆y.
Find the approximate values of : `root(3)(28)`
Find the approximate values of (4.01)3
Find the approximate values of : sin (29° 30'), given that 1°= 0.0175°, `sqrt(3) = 1.732`
Find the approximate values of : tan–1 (1.001)
Find the approximate values of : loge(101), given that loge10 = 2.3026.
Find the approximate values of : loge(9.01), given that log 3 = 1.0986.
The approximate value of tan (44° 30°), given that 1° = 0.0175, is ______.
Find the approximate value of the function f(x) = `sqrt(x^2 + 3x)` at x = 1.02.
Using differentiation, approximate value of f(x) = x2 - 2x + 1 at x = 2.99 is ______.
If the radius of a sphere is measured as 9 cm with an error of 0.03 cm, then find the approximating error in calculating its volume.
Find the approximate value of sin (30° 30′). Give that 1° = 0.0175c and cos 30° = 0.866