Advertisements
Advertisements
प्रश्न
A sphere of radius 100 mm shrinks to radius 98 mm, then the approximate decrease in its volume is
पर्याय
12000 π mm3
800 π mm3
80000 π mm3
120 π mm3
उत्तर
80000 π mm3
Let x be the radius of the sphere and y be its volume.
\[x = 100, x + ∆ x = 98\]
\[ \Rightarrow ∆ x = - 2\]
\[y = \frac{4}{3}\pi x^3 \]
\[ \Rightarrow \frac{dy}{dx} = 4\pi x^2 \]
\[ \Rightarrow \left( \frac{dy}{dx} \right)_{x = 100} = 40000\pi\]
\[ \therefore ∆ y = dy = \frac{dy}{dx}dx = 40000\pi \times \left( - 2 \right) = - 80000\pi\]
\[\text { Hence, the decrease in the volume of the sphere is } 80000\pi \text{mm}^ 3.\]
APPEARS IN
संबंधित प्रश्न
Using differentials, find the approximate value of the following up to 3 places of decimal
`(0.999)^(1/10)`
Using differentials, find the approximate value of the following up to 3 places of decimal
`(15)^(1/4)`
Using differentials, find the approximate value of the following up to 3 places of decimal
`(26)^(1/3)`
Using differentials, find the approximate value of the following up to 3 places of decimal
`(255)^(1/4)`
Using differentials, find the approximate value of the following up to 3 places of decimal
`(82)^(1/4)`
Using differentials, find the approximate value of the following up to 3 places of decimal
`(3.968)^(3/2)`
Find the approximate change in the volume V of a cube of side x metres caused by increasing side by 1%.
Find the approximate change in the surface area of a cube of side x metres caused by decreasing the side by 1%
If the radius of a sphere is measured as 7 m with an error of 0.02m, then find the approximate error in calculating its volume.
If f (x) = 3x2 + 15x + 5, then the approximate value of f (3.02) is
A. 47.66
B. 57.66
C. 67.66
D. 77.66
The approximate change in the volume of a cube of side x metres caused by increasing the side by 3% is
A. 0.06 x3 m3
B. 0.6 x3 m3
C. 0.09 x3 m3
D. 0.9 x3 m3
Using differentials, find the approximate value of each of the following.
`(33)^(1/5)`
Find the approximate change in the volume ‘V’ of a cube of side x metres caused by decreasing the side by 1%.
The radius of a sphere shrinks from 10 to 9.8 cm. Find approximately the decrease in its volume ?
If there is an error of 0.1% in the measurement of the radius of a sphere, find approximately the percentage error in the calculation of the volume of the sphere ?
1 Using differential, find the approximate value of the following:
\[\sqrt{25 . 02}\]
Using differential, find the approximate value of the following: \[\left( 0 . 007 \right)^\frac{1}{3}\]
Using differential, find the approximate value of the log10 10.1, it being given that log10e = 0.4343 ?
Using differential, find the approximate value of the \[\cos\left( \frac{11\pi}{36} \right)\] ?
Using differential, find the approximate value of the \[\left( 29 \right)^\frac{1}{3}\] ?
Using differential, find the approximate value of the \[\left( 66 \right)^\frac{1}{3}\] ?
Using differential, find the approximate value of the \[\left( 33 \right)^\frac{1}{5}\] ?
Using differential, find the approximate value of the \[\sqrt{36 . 6}\] ?
Find the approximate value of f (2.01), where f (x) = 4x2 + 5x + 2 ?
Find the approximate value of f (5.001), where f (x) = x3 − 7x2 + 15 ?
For the function y = x2, if x = 10 and ∆x = 0.1. Find ∆ y ?
The height of a cylinder is equal to the radius. If an error of α % is made in the height, then percentage error in its volume is
While measuring the side of an equilateral triangle an error of k % is made, the percentage error in its area is
If the ratio of base radius and height of a cone is 1 : 2 and percentage error in radius is λ %, then the error in its volume is
The pressure P and volume V of a gas are connected by the relation PV1/4 = constant. The percentage increase in the pressure corresponding to a deminition of 1/2 % in the volume is
For the function y = x2, if x = 10 and ∆x = 0.1. Find ∆y.
The approximate value of tan (44° 30°), given that 1° = 0.0175, is ______.
Find the approximate value of the function f(x) = `sqrt(x^2 + 3x)` at x = 1.02.
Solve the following : Find the approximate value of cos–1 (0.51), given π = 3.1416, `(2)/sqrt(3)` = 1.1547.
Find the approximate volume of metal in a hollow spherical shell whose internal and external radii are 3 cm and 3.0005 cm respectively
Find the approximate value of sin (30° 30′). Give that 1° = 0.0175c and cos 30° = 0.866