Advertisements
Advertisements
प्रश्न
If the radius of a sphere is measured as 7 m with an error of 0.02m, then find the approximate error in calculating its volume.
उत्तर
Let r be the radius of the sphere and Δr be the error in measuring the radius.
Then,
r = 7 m and Δr = 0.02 m
Now, the volume V of the sphere is given by,
Hence, the approximate error in calculating the volume is 3.92 π m3.
APPEARS IN
संबंधित प्रश्न
Using differentials, find the approximate value of the following up to 3 places of decimal
`sqrt(0.6)`
Using differentials, find the approximate value of the following up to 3 places of decimal
`(0.999)^(1/10)`
Using differentials, find the approximate value of the following up to 3 places of decimal
`(255)^(1/4)`
Using differentials, find the approximate value of the following up to 3 places of decimal
`(401)^(1/2)`
Using differentials, find the approximate value of the following up to 3 places of decimal
`(0.0037)^(1/2)`
Show that the function given by `f(x) = (log x)/x` has maximum at x = e.
The points on the curve 9y2 = x3, where the normal to the curve makes equal intercepts with the axes are
(A)`(4, +- 8/3)`
(B) `(4,(-8)/3)`
(C)`(4, +- 3/8)`
(D) `(+-4, 3/8)`
The radius of a sphere shrinks from 10 to 9.8 cm. Find approximately the decrease in its volume ?
Find the percentage error in calculating the surface area of a cubical box if an error of 1% is made in measuring the lengths of edges of the cube ?
Using differential, find the approximate value of the following: \[\left( 0 . 007 \right)^\frac{1}{3}\]
Using differential, find the approximate value of the \[\sqrt{401}\] ?
Using differential, find the approximate value of the \[\left( 255 \right)^\frac{1}{4}\] ?
Using differential, find the approximate value of the \[\frac{1}{(2 . 002 )^2}\] ?
Using differential, find the approximate value of the log10 10.1, it being given that log10e = 0.4343 ?
Using differential, find the approximate value of the \[\sin\left( \frac{22}{14} \right)\] ?
Using differential, find the approximate value of the \[\left( 66 \right)^\frac{1}{3}\] ?
Find the approximate value of f (2.01), where f (x) = 4x2 + 5x + 2 ?
Find the approximate value of f (5.001), where f (x) = x3 − 7x2 + 15 ?
Find the approximate value of log10 1005, given that log10 e = 0.4343 ?
If the radius of a sphere is measured as 9 cm with an error of 0.03 m, find the approximate error in calculating its surface area ?
Find the approximate change in the value V of a cube of side x metres caused by increasing the side by 1% ?
For the function y = x2, if x = 10 and ∆x = 0.1. Find ∆ y ?
If there is an error of 2% in measuring the length of a simple pendulum, then percentage error in its period is
If an error of k% is made in measuring the radius of a sphere, then percentage error in its volume is
A sphere of radius 100 mm shrinks to radius 98 mm, then the approximate decrease in its volume is
Find the approximate value of f(3.02), up to 2 places of decimal, where f(x) = 3x2 + 5x + 3.
Find the approximate values of : `root(3)(28)`
Find the approximate values of : `root(5)(31.98)`
Find the approximate values of : (3.97)4
Find the approximate values of : sin (29° 30'), given that 1°= 0.0175°, `sqrt(3) = 1.732`
Find the approximate values of : cos(60° 30°), given that 1° = 0.0175°, `sqrt(3) = 1.732`
Find the approximate values of : tan (45° 40'), given that 1° = 0.0175°.
Find the approximate values of : tan–1(0.999)
Find the approximate values of : e2.1, given that e2 = 7.389
The approximate value of tan (44° 30°), given that 1° = 0.0175, is ______.
Solve the following : Find the approximate value of cos–1 (0.51), given π = 3.1416, `(2)/sqrt(3)` = 1.1547.
If the radius of a sphere is measured as 9 m with an error of 0.03 m. the find the approximate error in calculating its surface area
The approximate change in volume of a cube of side `x` meters coverd by increasing the side by 3% is