English

If the Radius of a Sphere is Measured as 7 M with an Error of 0.02m, Then Find the Approximate Error in Calculating Its Volume. - Mathematics

Advertisements
Advertisements

Question

If the radius of a sphere is measured as 7 m with an error of 0.02m, then find the approximate error in calculating its volume.

Solution

Let r be the radius of the sphere and Δr be the error in measuring the radius.

Then,

r = 7 m and Δr = 0.02 m

Now, the volume V of the sphere is given by,

Hence, the approximate error in calculating the volume is 3.92 π m3.

shaalaa.com
  Is there an error in this question or solution?
Chapter 6: Application of Derivatives - Exercise 6.4 [Page 216]

APPEARS IN

NCERT Mathematics [English] Class 12
Chapter 6 Application of Derivatives
Exercise 6.4 | Q 6 | Page 216

Video TutorialsVIEW ALL [2]

RELATED QUESTIONS

Using differentials, find the approximate value of the following up to 3 places of decimal

`sqrt(25.3)`


Using differentials, find the approximate value of the following up to 3 places of decimal

`(0.0037)^(1/2)`


Using differentials, find the approximate value of the following up to 3 places of decimal

`(26.57)^(1/3)`


Find the approximate value of f (5.001), where f (x) = x3 − 7x2 + 15.


The approximate change in the volume of a cube of side x metres caused by increasing the side by 3% is

A. 0.06 x3 m3 

B. 0.6 x3 m3

C. 0.09 x3 m3

D. 0.9 x3 m3


A circular metal plate expends under heating so that its radius increases by k%. Find the approximate increase in the area of the plate, if the radius of the plate before heating is 10 cm.


If there is an error of 0.1% in the measurement of the radius of a sphere, find approximately the percentage error in the calculation of the volume of the sphere ?


The pressure p and the volume v of a gas are connected by the relation pv1.4 = const. Find the percentage error in p corresponding to a decrease of 1/2% in v .


Using differential, find the approximate value of the following:  \[\left( 0 . 009 \right)^\frac{1}{3}\]


Using differential, find the approximate value of the following: \[\left( 0 . 007 \right)^\frac{1}{3}\]


Using differential, find the approximate value of the loge 4.04, it being given that log104 = 0.6021 and log10e = 0.4343 ?


Using differential, find the approximate value of the  log10 10.1, it being given that log10e = 0.4343 ?


Using differential, find the approximate value of the \[\frac{1}{\sqrt{25 . 1}}\] ?


Using differential, find the approximate value of the \[\left( 80 \right)^\frac{1}{4}\] ?


Using differential, find the approximate value of the \[\sqrt{26}\] ?


Using differential, find the approximate value of the  \[\sqrt{37}\] ?


Using differential, find the approximate value of the  \[\sqrt{0 . 48}\] ?


Using differential, find the approximate value of the \[\left( 1 . 999 \right)^5\] ?


Using differential, find the approximate value of the \[{25}^\frac{1}{3}\] ?


The circumference of a circle is measured as 28 cm with an error of 0.01 cm. The percentage error in the area is

 


Find the approximate values of : `root(3)(28)`


Find the approximate values of : `root(5)(31.98)`


Find the approximate values of : (3.97)4 


Find the approximate values of : tan–1(0.999)


Find the approximate values of : cot–1 (0.999)


Find the approximate values of : loge(101), given that loge10 = 2.3026.


Find the approximate values of : loge(9.01), given that log 3 = 1.0986.


Solve the following : Find the approximate value of cos–1 (0.51), given π = 3.1416, `(2)/sqrt(3)` = 1.1547.


The approximate value of the function f(x) = x3 − 3x + 5 at x = 1.99 is ____________.


Using differentials, find the approximate value of `sqrt(0.082)`


If the radius of a sphere is measured as 9 cm with an error of 0.03 cm, then find the approximating error in calculating its volume.


If the radius of a sphere is measured as 9 m with an error of 0.03 m. the find the approximate error in calculating its surface area


If `(x) = 3x^2 + 15x + 5`, then the approximate value of `f(3.02)` is


Find the approximate value of sin (30° 30′). Give that 1° = 0.0175c and cos 30° = 0.866


Find the approximate value of tan−1 (1.002).
[Given: π = 3.1416]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×