English

The Circumference of a Circle is Measured as 28 Cm with an Error of 0.01 Cm. the Percentage Error in the Area is - Mathematics

Advertisements
Advertisements

Question

The circumference of a circle is measured as 28 cm with an error of 0.01 cm. The percentage error in the area is

 

Options

  • \[\frac{1}{14}\]

  • 0.01

  • \[\frac{1}{7}\]

  • none of these

MCQ

Solution

\[\frac{1}{14}\]

Let x be the radius of the circle and y be its circumference.

\[x = 28 cm\]

\[ ∆ x = 0 . 01 cm\]

\[x = 2\pi r\]

\[y = \pi r^2 = \pi \times \frac{x^2}{4 \pi^2} = \frac{x^2}{4\pi}\]

\[ \Rightarrow \frac{dy}{dx} = \frac{x}{2\pi}\]

\[ \Rightarrow \frac{∆ y}{y} = \frac{x}{2\pi y}dx = \frac{2}{x} \times 0 . 01\]

\[ \Rightarrow \frac{∆ y}{y} \times 100 = \frac{2}{x} = \frac{1}{14}\]

\[\text { Hence, the percentage error in the area is } \frac{1}{14} .\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 14: Differentials, Errors and Approximations - Exercise 14.3 [Page 13]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 14 Differentials, Errors and Approximations
Exercise 14.3 | Q 12 | Page 13

Video TutorialsVIEW ALL [2]

RELATED QUESTIONS

Using differentials, find the approximate value of the following up to 3 places of decimal

`sqrt(25.3)`


Using differentials, find the approximate value of the following up to 3 places of decimal

`(26)^(1/3)`


Using differentials, find the approximate value of the following up to 3 places of decimal

`(82)^(1/4)`


Using differentials, find the approximate value of the following up to 3 places of decimal

`(401)^(1/2)`


Using differentials, find the approximate value of the following up to 3 places of decimal

`(26.57)^(1/3)`


Find the approximate value of f (2.01), where f (x) = 4x2 + 5x + 2


Find the approximate value of f (5.001), where f (x) = x3 − 7x2 + 15.


Find the approximate change in the volume V of a cube of side x metres caused by increasing side by 1%.


Find the approximate change in the surface area of a cube of side x metres caused by decreasing the side by 1%


The approximate change in the volume of a cube of side x metres caused by increasing the side by 3% is

A. 0.06 x3 m3 

B. 0.6 x3 m3

C. 0.09 x3 m3

D. 0.9 x3 m3


The normal at the point (1, 1) on the curve 2y + x2 = 3 is

(A) x + y = 0

(B) x − = 0

(C) x + y + 1 = 0

(D) − y = 1


Find the approximate value of log10 (1016), given that log10e = 0⋅4343.


The pressure p and the volume v of a gas are connected by the relation pv1.4 = const. Find the percentage error in p corresponding to a decrease of 1/2% in v .


Show that the relative error in computing the volume of a sphere, due to an error in measuring the radius, is approximately equal to three times the relative error in the radius ?


Using differential, find the approximate value of the \[\sqrt{401}\] ?


Using differential, find the approximate value of the \[\left( 255 \right)^\frac{1}{4}\] ?


Using differential, find the approximate value of the \[\sin\left( \frac{22}{14} \right)\] ?


Using differential, find the approximate value of the \[\sqrt{26}\] ?


Using differential, find the approximate value of the  \[\sqrt{37}\] ?


Using differential, find the approximate value of the \[\left( 82 \right)^\frac{1}{4}\] ?


Using differential, find the approximate value of the \[\sqrt{49 . 5}\] ?


Using differential, find the approximate value of the \[{25}^\frac{1}{3}\] ?


For the function y = x2, if x = 10 and ∆x = 0.1. Find ∆ y ?


While measuring the side of an equilateral triangle an error of k % is made, the percentage error in its area is


If the ratio of base radius and height of a cone is 1 : 2 and percentage error in radius is λ %, then the error in its volume is


For the function y = x2, if x = 10 and ∆x = 0.1. Find ∆y.


Find the approximate values of : tan–1(0.999)


Find the approximate values of : cot–1 (0.999)


Find the approximate values of : e2.1, given that e2 = 7.389


Solve the following : Find the approximate value of cos–1 (0.51), given π = 3.1416, `(2)/sqrt(3)` = 1.1547.


Using differentials, find the approximate value of `sqrt(0.082)`


Find the approximate value of f(3.02), where f(x) = 3x2 + 5x + 3


The approximate value of f(x) = x3 + 5x2 – 7x + 9 at x = 1.1 is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×