Advertisements
Advertisements
Question
Find the approximate values of : tan–1(0.999)
Solution
Let f(x) = tan–1x
Then f'(x) = `d/dx(tan^-1x) = (1)/(1 + x^2)`
Take a = 1 and h = – 0.001
Then f(a) = f(1) = tan–11 = `pi/(4)`
and f'(a) = f'(1) = `(1)/(1 + 1^2) = (1)/(2)`
The formula for approximation is
f(a + h) ≑ f(a) + h.f'(a)
∴ tan–1 (0.999)
= f(0.999)
= f(1 – 0.001)
≑ f(1) – (0.001).f'(1)
≑ `pi/(4) - 0.001 xx (1)/(2)`
= `pi/(4) - 0.0005`
∴ tan–1 (0999) ≑ `pi/(4) - 0.0005`.
Remark: The answer can also be given as :
tan–1 (0.999) ≑ `(3.1416)/(4) - 0.0005`
≑ 0.7854 – 0.0005
= 0.7849.
APPEARS IN
RELATED QUESTIONS
Find the approximate value of ` sqrt8.95 `
Using differentials, find the approximate value of the following up to 3 places of decimal
`sqrt(49.5)`
Using differentials, find the approximate value of the following up to 3 places of decimal
`(26)^(1/3)`
Using differentials, find the approximate value of the following up to 3 places of decimal
`(255)^(1/4)`
Using differentials, find the approximate value of the following up to 3 places of decimal
`(82)^(1/4)`
Using differentials, find the approximate value of the following up to 3 places of decimal
`(32.15)^(1/5)`
Find the approximate value of f (2.01), where f (x) = 4x2 + 5x + 2
Find the approximate value of f (5.001), where f (x) = x3 − 7x2 + 15.
If the radius of a sphere is measured as 7 m with an error of 0.02m, then find the approximate error in calculating its volume.
If f (x) = 3x2 + 15x + 5, then the approximate value of f (3.02) is
A. 47.66
B. 57.66
C. 67.66
D. 77.66
The approximate change in the volume of a cube of side x metres caused by increasing the side by 3% is
A. 0.06 x3 m3
B. 0.6 x3 m3
C. 0.09 x3 m3
D. 0.9 x3 m3
Using differentials, find the approximate value of each of the following.
`(33)^(1/5)`
Show that the function given by `f(x) = (log x)/x` has maximum at x = e.
The points on the curve 9y2 = x3, where the normal to the curve makes equal intercepts with the axes are
(A)`(4, +- 8/3)`
(B) `(4,(-8)/3)`
(C)`(4, +- 3/8)`
(D) `(+-4, 3/8)`
Find the approximate value of log10 (1016), given that log10e = 0⋅4343.
Find the approximate change in the volume ‘V’ of a cube of side x metres caused by decreasing the side by 1%.
The radius of a sphere shrinks from 10 to 9.8 cm. Find approximately the decrease in its volume ?
Find the percentage error in calculating the surface area of a cubical box if an error of 1% is made in measuring the lengths of edges of the cube ?
1 Using differential, find the approximate value of the following:
\[\sqrt{25 . 02}\]
Using differential, find the approximate value of the \[\sqrt{401}\] ?
Using differential, find the approximate value of the loge 4.04, it being given that log104 = 0.6021 and log10e = 0.4343 ?
Using differential, find the approximate value of the loge 10.02, it being given that loge10 = 2.3026 ?
Using differential, find the approximate value of the \[\frac{1}{\sqrt{25 . 1}}\] ?
Using differential, find the approximate value of the \[\sin\left( \frac{22}{14} \right)\] ?
Using differential, find the approximate value of the \[\cos\left( \frac{11\pi}{36} \right)\] ?
Using differential, find the approximate value of the \[\left( 80 \right)^\frac{1}{4}\] ?
Using differential, find the approximate value of the \[\left( 29 \right)^\frac{1}{3}\] ?
Using differential, find the approximate value of the \[\sqrt{26}\] ?
Using differential, find the approximate value of the \[\sqrt{37}\] ?
Using differential, find the approximate value of the \[\left( 82 \right)^\frac{1}{4}\] ?
Using differential, find the approximate value of the \[\sqrt{36 . 6}\] ?
Using differential, find the approximate value of the \[\left( 1 . 999 \right)^5\] ?
Using differential, find the approximate value of the \[{25}^\frac{1}{3}\] ?
Find the approximate value of f (5.001), where f (x) = x3 − 7x2 + 15 ?
Find the approximate value of log10 1005, given that log10 e = 0.4343 ?
For the function y = x2, if x = 10 and ∆x = 0.1. Find ∆ y ?
If the relative error in measuring the radius of a circular plane is α, find the relative error in measuring its area ?
A piece of ice is in the form of a cube melts so that the percentage error in the edge of cube is a, then find the percentage error in its volume ?
While measuring the side of an equilateral triangle an error of k % is made, the percentage error in its area is
The pressure P and volume V of a gas are connected by the relation PV1/4 = constant. The percentage increase in the pressure corresponding to a deminition of 1/2 % in the volume is
Find the approximate values of : `root(3)(28)`
Find the approximate values of : `root(5)(31.98)`
Find the approximate values of : (3.97)4
Find the approximate values of : sin 61° , given that 1° = 0.0174c, `sqrt(3) = 1.732`
Find the approximate values of : sin (29° 30'), given that 1°= 0.0175°, `sqrt(3) = 1.732`
Find the approximate values of : cos(60° 30°), given that 1° = 0.0175°, `sqrt(3) = 1.732`
Find the approximate values of : cot–1 (0.999)
Find the approximate values of : 32.01, given that log 3 = 1.0986
Find the approximate values of : f(x) = x3 – 3x + 5 at x = 1.99.
The approximate value of tan (44° 30°), given that 1° = 0.0175, is ______.
The approximate value of the function f(x) = x3 − 3x + 5 at x = 1.99 is ____________.
Using differentials, find the approximate value of `sqrt(0.082)`
Find the approximate value of (1.999)5.
If the radius of a sphere is measured as 9 m with an error of 0.03 m. the find the approximate error in calculating its surface area
The approximate change in volume of a cube of side `x` meters coverd by increasing the side by 3% is
Find the approximate value of tan−1 (1.002).
[Given: π = 3.1416]