Advertisements
Advertisements
Question
Show that the function given by `f(x) = (log x)/x` has maximum at x = e.
Solution
We have f (x) = `log x/x, x > 0`
Differentiating w.r.t. x , we get
⇒ `f' (x) = (x(1/x) - (log x)*1)/x^2`
`= (1 - log x)/x^2`
For maximum / minimum, f (x) = 0
⇒ `(1 - log x)/x^2 = 0`
⇒ log x = 1 .....(∵x2 ≠ 0)
⇒ x = e
Again differentiating w.r.t x, we get
`f'' (x) = (x^2 (-1/x) - (1 - log x) 2x)/x^4`
`= (-x - 2x + 2x log x)/x^4`
`= (x (2 log x - 3))/x^4`
`= (2 log x - 3)/x^3`
Also, f'' (e) = `(2 log e - 3)/e^3`
`= (2.1 - 3)/e^3` ....(∵ loge e = 1)
`= -1/e^3 < 0`
⇒ f (x) has a maximum value at x = e.
APPEARS IN
RELATED QUESTIONS
Find the approximate value of ` sqrt8.95 `
Find the approximate value of cos (60° 30').
(Given: 1° = 0.0175c, sin 60° = 0.8660)
Using differentials, find the approximate value of the following up to 3 places of decimal
`sqrt(25.3)`
Using differentials, find the approximate value of the following up to 3 places of decimal
`(0.999)^(1/10)`
Using differentials, find the approximate value of the following up to 3 places of decimal
`(26)^(1/3)`
Using differentials, find the approximate value of the following up to 3 places of decimal
`(82)^(1/4)`
Using differentials, find the approximate value of the following up to 3 places of decimal
`(401)^(1/2)`
Using differentials, find the approximate value of the following up to 3 places of decimal
`(3.968)^(3/2)`
Find the approximate change in the surface area of a cube of side x metres caused by decreasing the side by 1%
If the radius of a sphere is measured as 9 m with an error of 0.03 m, then find the approximate error in calculating in surface area
The points on the curve 9y2 = x3, where the normal to the curve makes equal intercepts with the axes are
(A)`(4, +- 8/3)`
(B) `(4,(-8)/3)`
(C)`(4, +- 3/8)`
(D) `(+-4, 3/8)`
Show that the relative error in computing the volume of a sphere, due to an error in measuring the radius, is approximately equal to three times the relative error in the radius ?
1 Using differential, find the approximate value of the following:
\[\sqrt{25 . 02}\]
Using differential, find the approximate value of the \[\left( 255 \right)^\frac{1}{4}\] ?
Using differential, find the approximate value of the loge 10.02, it being given that loge10 = 2.3026 ?
Using differentials, find the approximate values of the cos 61°, it being given that sin60° = 0.86603 and 1° = 0.01745 radian ?
Using differential, find the approximate value of the \[\left( 80 \right)^\frac{1}{4}\] ?
Using differential, find the approximate value of the \[\left( 66 \right)^\frac{1}{3}\] ?
Using differential, find the approximate value of the \[\left( \frac{17}{81} \right)^\frac{1}{4}\] ?
Using differential, find the approximate value of the \[\left( 3 . 968 \right)^\frac{3}{2}\] ?
Using differential, find the approximate value of the \[\left( 1 . 999 \right)^5\] ?
Using differential, find the approximate value of the \[{25}^\frac{1}{3}\] ?
Find the approximate value of log10 1005, given that log10 e = 0.4343 ?
If the relative error in measuring the radius of a circular plane is α, find the relative error in measuring its area ?
If the percentage error in the radius of a sphere is α, find the percentage error in its volume ?
If there is an error of 2% in measuring the length of a simple pendulum, then percentage error in its period is
If loge 4 = 1.3868, then loge 4.01 =
For the function y = x2, if x = 10 and ∆x = 0.1. Find ∆y.
Find the approximate values of : (3.97)4
Find the approximate values of : loge(101), given that loge10 = 2.3026.
Find the approximate values of : f(x) = x3 – 3x + 5 at x = 1.99.
The approximate value of tan (44° 30°), given that 1° = 0.0175, is ______.
If the radius of a sphere is measured as 9 m with an error of 0.03 m. the find the approximate error in calculating its surface area
If `(x) = 3x^2 + 15x + 5`, then the approximate value of `f(3.02)` is
The approximate change in volume of a cube of side `x` meters coverd by increasing the side by 3% is