Advertisements
Advertisements
Question
If the radius of a sphere is measured as 9 m with an error of 0.03 m, then find the approximate error in calculating in surface area
Solution
Let r be the radius of the sphere and Δr be the error in measuring the radius.
Then,
r = 9 m and Δr = 0.03 m
Now, the surface area of the sphere (S) is given by,
S = 4πr2
Hence, the approximate error in calculating the surface area is 2.16π m2.
APPEARS IN
RELATED QUESTIONS
Find the approximate value of cos (60° 30').
(Given: 1° = 0.0175c, sin 60° = 0.8660)
Using differentials, find the approximate value of the following up to 3 places of decimal
`sqrt(25.3)`
Using differentials, find the approximate value of the following up to 3 places of decimal
`(26)^(1/3)`
Using differentials, find the approximate value of the following up to 3 places of decimal
`(255)^(1/4)`
Using differentials, find the approximate value of the following up to 3 places of decimal
`(32.15)^(1/5)`
Find the approximate value of f (2.01), where f (x) = 4x2 + 5x + 2
Find the approximate change in the volume V of a cube of side x metres caused by increasing side by 1%.
If the radius of a sphere is measured as 7 m with an error of 0.02m, then find the approximate error in calculating its volume.
Using differentials, find the approximate value of each of the following.
`(33)^(1/5)`
Find the approximate change in the volume ‘V’ of a cube of side x metres caused by decreasing the side by 1%.
A circular metal plate expends under heating so that its radius increases by k%. Find the approximate increase in the area of the plate, if the radius of the plate before heating is 10 cm.
The pressure p and the volume v of a gas are connected by the relation pv1.4 = const. Find the percentage error in p corresponding to a decrease of 1/2% in v .
Using differential, find the approximate value of the loge 4.04, it being given that log104 = 0.6021 and log10e = 0.4343 ?
Using differential, find the approximate value of the loge 10.02, it being given that loge10 = 2.3026 ?
Using differential, find the approximate value of the \[\sqrt{26}\] ?
Using differential, find the approximate value of the \[\sqrt{0 . 48}\] ?
Using differential, find the approximate value of the \[\left( 82 \right)^\frac{1}{4}\] ?
Using differential, find the approximate value of the \[\left( 3 . 968 \right)^\frac{3}{2}\] ?
Using differential, find the approximate value of the \[{25}^\frac{1}{3}\] ?
Find the approximate change in the value V of a cube of side x metres caused by increasing the side by 1% ?
For the function y = x2, if x = 10 and ∆x = 0.1. Find ∆ y ?
If there is an error of 2% in measuring the length of a simple pendulum, then percentage error in its period is
If there is an error of a% in measuring the edge of a cube, then percentage error in its surface is
While measuring the side of an equilateral triangle an error of k % is made, the percentage error in its area is
If loge 4 = 1.3868, then loge 4.01 =
If the ratio of base radius and height of a cone is 1 : 2 and percentage error in radius is λ %, then the error in its volume is
The pressure P and volume V of a gas are connected by the relation PV1/4 = constant. The percentage increase in the pressure corresponding to a deminition of 1/2 % in the volume is
Find the approximate value of f(3.02), up to 2 places of decimal, where f(x) = 3x2 + 5x + 3.
Find the approximate values of : `sqrt(8.95)`
Find the approximate values of (4.01)3
Find the approximate values of : tan–1(0.999)
Find the approximate values of : 32.01, given that log 3 = 1.0986
The approximate value of the function f(x) = x3 − 3x + 5 at x = 1.99 is ____________.
Find the approximate volume of metal in a hollow spherical shell whose internal and external radii are 3 cm and 3.0005 cm respectively
The approximate change in volume of a cube of side `x` meters coverd by increasing the side by 3% is
Find the approximate value of sin (30° 30′). Give that 1° = 0.0175c and cos 30° = 0.866