मराठी

If the Radius of a Sphere is Measured as 9 M with an Error of 0.03 M, Then Find the Approximate Error in Calculating in Surface Area - Mathematics

Advertisements
Advertisements

प्रश्न

If the radius of a sphere is measured as 9 m with an error of 0.03 m, then find the approximate error in calculating in surface area

उत्तर

Let be the radius of the sphere and Δr be the error in measuring the radius.

Then,

r = 9 m and Δr = 0.03 m

Now, the surface area of the sphere (S) is given by,

S = 4πr2

Hence, the approximate error in calculating the surface area is 2.16π m2.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 6: Application of Derivatives - Exercise 6.4 [पृष्ठ २१६]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 12
पाठ 6 Application of Derivatives
Exercise 6.4 | Q 7 | पृष्ठ २१६

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

Find the approximate value of ` sqrt8.95 `


Using differentials, find the approximate value of the following up to 3 places of decimal

`(0.009)^(1/3)`


Using differentials, find the approximate value of the following up to 3 places of decimal

`(15)^(1/4)`


Using differentials, find the approximate value of the following up to 3 places of decimal

`(255)^(1/4)`


Find the approximate value of f (2.01), where f (x) = 4x2 + 5x + 2


Find the approximate change in the volume V of a cube of side x metres caused by increasing side by 1%.


Find the approximate change in the surface area of a cube of side x metres caused by decreasing the side by 1%


If f (x) = 3x2 + 15x + 5, then the approximate value of (3.02) is

A. 47.66

B. 57.66

C. 67.66

D. 77.66


Using differentials, find the approximate value of each of the following.

`(33)^(1/5)`


The normal at the point (1, 1) on the curve 2y + x2 = 3 is

(A) x + y = 0

(B) x − = 0

(C) x + y + 1 = 0

(D) − y = 1


If y = sin x and x changes from π/2 to 22/14, what is the approximate change in y ?


Using differential, find the approximate value of the loge 4.04, it being given that log104 = 0.6021 and log10e = 0.4343 ?


Using differential, find the approximate value of the \[\sin\left( \frac{22}{14} \right)\] ?


Using differential, find the approximate value of the \[\cos\left( \frac{11\pi}{36} \right)\] ?


Using differential, find the approximate value of the \[\left( 80 \right)^\frac{1}{4}\] ?


Using differential, find the approximate value of the \[\left( 66 \right)^\frac{1}{3}\] ?


Using differential, find the approximate value of the \[\sqrt{26}\] ?


Using differential, find the approximate value of the  \[\sqrt{0 . 082}\] ?


If the relative error in measuring the radius of a circular plane is α, find the relative error in measuring its area ?


If the percentage error in the radius of a sphere is α, find the percentage error in its volume ?


A piece of ice is in the form of a cube melts so that the percentage error in the edge of cube is a, then find the percentage error in its volume ?


If there is an error of 2% in measuring the length of a simple pendulum, then percentage error in its period is


If there is an error of a% in measuring the edge of a cube, then percentage error in its surface is


While measuring the side of an equilateral triangle an error of k % is made, the percentage error in its area is


Find the approximate values of : (3.97)4 


Find the approximate values of : e0.995, given that e = 2.7183.


Find the approximate values of : f(x) = x3 – 3x + 5 at x = 1.99.


Find the approximate values of : f(x) = x3 + 5x2 – 7x + 10 at x = 1.12.


The approximate value of the function f(x) = x3 − 3x + 5 at x = 1.99 is ____________.


Find the approximate volume of metal in a hollow spherical shell whose internal and external radii are 3 cm and 3.0005 cm respectively


If y = x4 – 10 and if x changes from 2 to 1.99, what is the change in y ______.


If `(x) = 3x^2 + 15x + 5`, then the approximate value of `f(3.02)` is


The approximate value of f(x) = x3 + 5x2 – 7x + 9 at x = 1.1 is ______.


Find the approximate value of sin (30° 30′). Give that 1° = 0.0175c and cos 30° = 0.866


Find the approximate value of tan−1 (1.002).
[Given: π = 3.1416]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×