मराठी

The Normal at the Point (1, 1) on the Curve 2y + X2 = 3 is - Mathematics

Advertisements
Advertisements

प्रश्न

The normal at the point (1, 1) on the curve 2y + x2 = 3 is

(A) x + y = 0

(B) x − = 0

(C) x + y + 1 = 0

(D) − y = 1

उत्तर

The equation of the given curve is 2y + x2 = 3.

Differentiating with respect to x, we have:

The correct answer is B.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 6: Application of Derivatives - Exercise 6.6 [पृष्ठ २४४]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 12
पाठ 6 Application of Derivatives
Exercise 6.6 | Q 22 | पृष्ठ २४४

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

Using differentials, find the approximate value of the following up to 3 places of decimal

`(0.009)^(1/3)`


Using differentials, find the approximate value of the following up to 3 places of decimal

`(0.999)^(1/10)`


Using differentials, find the approximate value of the following up to 3 places of decimal

`(15)^(1/4)`


Using differentials, find the approximate value of the following up to 3 places of decimal

`(82)^(1/4)`


Using differentials, find the approximate value of the following up to 3 places of decimal

`(401)^(1/2)`


Using differentials, find the approximate value of the following up to 3 places of decimal

`(3.968)^(3/2)`


If the radius of a sphere is measured as 7 m with an error of 0.02m, then find the approximate error in calculating its volume.


If f (x) = 3x2 + 15x + 5, then the approximate value of (3.02) is

A. 47.66

B. 57.66

C. 67.66

D. 77.66


The points on the curve 9y2 = x3, where the normal to the curve makes equal intercepts with the axes are

(A)`(4, +- 8/3)`

(B) `(4,(-8)/3)`

(C)`(4, +- 3/8)`

(D) `(+-4, 3/8)`


A circular metal plate expends under heating so that its radius increases by k%. Find the approximate increase in the area of the plate, if the radius of the plate before heating is 10 cm.


1 Using differential, find the approximate value of the following:

\[\sqrt{25 . 02}\]


Using differential, find the approximate value of the following: \[\left( 0 . 007 \right)^\frac{1}{3}\]


Using differential, find the approximate value of the \[\left( 255 \right)^\frac{1}{4}\] ?


Using differential, find the approximate value of the \[\frac{1}{(2 . 002 )^2}\] ?


Using differentials, find the approximate values of the cos 61°, it being given that sin60° = 0.86603 and 1° = 0.01745 radian ?


Using differential, find the approximate value of the \[\sin\left( \frac{22}{14} \right)\] ?


Using differential, find the approximate value of the \[\left( 29 \right)^\frac{1}{3}\] ?


Using differential, find the approximate value of the  \[\sqrt{37}\] ?


Using differential, find the approximate value of the \[\left( 33 \right)^\frac{1}{5}\] ?


Using differential, find the approximate value of the \[\sqrt{36 . 6}\] ?


Find the approximate value of f (2.01), where f (x) = 4x2 + 5x + 2 ?


If the radius of a sphere is measured as 9 cm with an error of 0.03 m, find the approximate error in calculating its surface area ?


For the function y = x2, if x = 10 and ∆x = 0.1. Find ∆ y ?


If the percentage error in the radius of a sphere is α, find the percentage error in its volume ?


If there is an error of a% in measuring the edge of a cube, then percentage error in its surface is


While measuring the side of an equilateral triangle an error of k % is made, the percentage error in its area is


If loge 4 = 1.3868, then loge 4.01 =


The pressure P and volume V of a gas are connected by the relation PV1/4 = constant. The percentage increase in the pressure corresponding to a deminition of 1/2 % in the volume is

 


The approximate value of (33)1/5 is


Find the approximate values of : (3.97)4 


Find the approximate values of (4.01)3 


Find the approximate values of : e0.995, given that e = 2.7183.


Find the approximate values of : loge(9.01), given that log 3 = 1.0986.


The approximate value of the function f(x) = x3 − 3x + 5 at x = 1.99 is ____________.


If `(x) = 3x^2 + 15x + 5`, then the approximate value of `f(3.02)` is


Find the approximate value of sin (30° 30′). Give that 1° = 0.0175c and cos 30° = 0.866


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×