Advertisements
Advertisements
प्रश्न
Using differential, find the approximate value of the \[\sqrt{37}\] ?
उत्तर
\[\text { Consider the function y } = f\left( x \right) = \sqrt{x} . \]
\[\text { Let }: \]
\[ x = 36 \]
\[x + ∆ x = 37\]
\[\text { Then }, \]
\[ ∆ x = 1\]
\[\text { For } x = 36, \]
\[ y = \sqrt{36} = 6\]
\[\text { Let }: \]
\[ dx = ∆ x = 1\]
\[\text { Now,} y = \left( x \right)^\frac{1}{2} \]
\[ \Rightarrow \frac{dy}{dx} = \frac{1}{2\sqrt{x}}\]
\[ \Rightarrow \left( \frac{dy}{dx} \right)_{x = 36} = \frac{1}{12}\]
\[ \therefore ∆ y = dy = \frac{dy}{dx}dx = \frac{1}{12} \times 1 = 0 . 0833\]
\[ \Rightarrow ∆ y = 0 . 0833\]
\[ \therefore \sqrt{37} = y + ∆ y = 6 . 0833\]
APPEARS IN
संबंधित प्रश्न
Using differentials, find the approximate value of the following up to 3 places of decimal
`sqrt(0.6)`
Using differentials, find the approximate value of the following up to 3 places of decimal
`(255)^(1/4)`
Using differentials, find the approximate value of the following up to 3 places of decimal
`(401)^(1/2)`
Using differentials, find the approximate value of the following up to 3 places of decimal
`(0.0037)^(1/2)`
Using differentials, find the approximate value of the following up to 3 places of decimal
`(26.57)^(1/3)`
Find the approximate value of f (5.001), where f (x) = x3 − 7x2 + 15.
If the radius of a sphere is measured as 9 m with an error of 0.03 m, then find the approximate error in calculating in surface area
The approximate change in the volume of a cube of side x metres caused by increasing the side by 3% is
A. 0.06 x3 m3
B. 0.6 x3 m3
C. 0.09 x3 m3
D. 0.9 x3 m3
The points on the curve 9y2 = x3, where the normal to the curve makes equal intercepts with the axes are
(A)`(4, +- 8/3)`
(B) `(4,(-8)/3)`
(C)`(4, +- 3/8)`
(D) `(+-4, 3/8)`
Find the approximate value of log10 (1016), given that log10e = 0⋅4343.
Find the percentage error in calculating the surface area of a cubical box if an error of 1% is made in measuring the lengths of edges of the cube ?
1 Using differential, find the approximate value of the following:
\[\sqrt{25 . 02}\]
Using differential, find the approximate value of the \[\left( 15 \right)^\frac{1}{4}\] ?
Using differential, find the approximate value of the \[\left( 255 \right)^\frac{1}{4}\] ?
Using differential, find the approximate value of the \[\frac{1}{\sqrt{25 . 1}}\] ?
Using differential, find the approximate value of the \[\sin\left( \frac{22}{14} \right)\] ?
Using differential, find the approximate value of the \[\cos\left( \frac{11\pi}{36} \right)\] ?
Using differential, find the approximate value of the \[\left( 80 \right)^\frac{1}{4}\] ?
Using differential, find the approximate value of the \[\sqrt{0 . 48}\] ?
Using differential, find the approximate value of the \[\left( 1 . 999 \right)^5\] ?
Find the approximate value of log10 1005, given that log10 e = 0.4343 ?
Find the approximate change in the value V of a cube of side x metres caused by increasing the side by 1% ?
If y = loge x, then find ∆y when x = 3 and ∆x = 0.03 ?
If the relative error in measuring the radius of a circular plane is α, find the relative error in measuring its area ?
If there is an error of a% in measuring the edge of a cube, then percentage error in its surface is
While measuring the side of an equilateral triangle an error of k % is made, the percentage error in its area is
A sphere of radius 100 mm shrinks to radius 98 mm, then the approximate decrease in its volume is
Find the approximate values of : sin 61° , given that 1° = 0.0174c, `sqrt(3) = 1.732`
Find the approximate values of : tan–1 (1.001)
Find the approximate values of : e0.995, given that e = 2.7183.
Find the approximate values of : f(x) = x3 – 3x + 5 at x = 1.99.
Solve the following : Find the approximate value of cos–1 (0.51), given π = 3.1416, `(2)/sqrt(3)` = 1.1547.
Using differentiation, approximate value of f(x) = x2 - 2x + 1 at x = 2.99 is ______.
Using differentials, find the approximate value of `sqrt(0.082)`
Find the approximate value of (1.999)5.
If y = x4 – 10 and if x changes from 2 to 1.99, what is the change in y ______.
The approximate value of f(x) = x3 + 5x2 – 7x + 9 at x = 1.1 is ______.