मराठी

Using differentials, find the approximate value of 0.082 - Mathematics

Advertisements
Advertisements

प्रश्न

Using differentials, find the approximate value of `sqrt(0.082)`

बेरीज

उत्तर

Let f(x) = `sqrt(x)`

Using f(x + ∆x) = f(x) + ∆x . f′(x), taking x = 0.09 and ∆x = – 0.008,

We get f(0.09 – 0.008) = f(0.09) + (– 0.008) f′(0.09)

⇒ `sqrt(0.082) = sqrt(0.09) - 0.008 . (1/(2sqrt(0.09)))`

= `0.3 - (0.008)/0.6`

= 0.3 – 0.0133

= 0.2867.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 6: Application Of Derivatives - Solved Examples [पृष्ठ १२२]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
पाठ 6 Application Of Derivatives
Solved Examples | Q 7 | पृष्ठ १२२

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

Find the approximate value of cos (60° 30').

(Given: 1° = 0.0175c, sin 60° = 0.8660)


Using differentials, find the approximate value of the following up to 3 places of decimal

`sqrt(0.6)`


Using differentials, find the approximate value of the following up to 3 places of decimal

`(0.009)^(1/3)`


Using differentials, find the approximate value of the following up to 3 places of decimal

`(26)^(1/3)`


Using differentials, find the approximate value of the following up to 3 places of decimal

`(255)^(1/4)`


Using differentials, find the approximate value of the following up to 3 places of decimal

`(401)^(1/2)`


Using differentials, find the approximate value of the following up to 3 places of decimal

`(26.57)^(1/3)`


Find the approximate value of f (2.01), where f (x) = 4x2 + 5x + 2


Find the approximate value of f (5.001), where f (x) = x3 − 7x2 + 15.


If the radius of a sphere is measured as 9 m with an error of 0.03 m, then find the approximate error in calculating in surface area


If f (x) = 3x2 + 15x + 5, then the approximate value of (3.02) is

A. 47.66

B. 57.66

C. 67.66

D. 77.66


Find the approximate change in the volume ‘V’ of a cube of side x metres caused by decreasing the side by 1%.


If there is an error of 0.1% in the measurement of the radius of a sphere, find approximately the percentage error in the calculation of the volume of the sphere ?


Using differential, find the approximate value of the following:  \[\left( 0 . 009 \right)^\frac{1}{3}\]


Using differential, find the approximate value of the \[\sqrt{401}\] ?


Using differential, find the approximate value of the \[\left( 29 \right)^\frac{1}{3}\] ?


Using differential, find the approximate value of the \[\left( 82 \right)^\frac{1}{4}\] ?


Find the approximate value of f (5.001), where f (x) = x3 − 7x2 + 15 ? 


If the radius of a sphere is measured as 9 cm with an error of 0.03 m, find the approximate error in calculating its surface area ?


The height of a cylinder is equal to the radius. If an error of α % is made in the height, then percentage error in its volume is


A sphere of radius 100 mm shrinks to radius 98 mm, then the approximate decrease in its volume is


The pressure P and volume V of a gas are connected by the relation PV1/4 = constant. The percentage increase in the pressure corresponding to a deminition of 1/2 % in the volume is

 


If y = xn  then the ratio of relative errors in y and x is


The circumference of a circle is measured as 28 cm with an error of 0.01 cm. The percentage error in the area is

 


Find the approximate values of : (3.97)4 


Find the approximate values of : sin (29° 30'), given that 1°= 0.0175°, `sqrt(3) = 1.732`


Find the approximate values of : f(x) = x3 – 3x + 5 at x = 1.99.


Find the approximate value of the function f(x) = `sqrt(x^2 + 3x)` at x = 1.02.


Using differentiation, approximate value of f(x) = x2 - 2x + 1 at x = 2.99 is ______.


If the radius of a sphere is measured as 9 m with an error of 0.03 m. the find the approximate error in calculating its surface area


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×