Advertisements
Advertisements
प्रश्न
Find the approximate value of the function f(x) = `sqrt(x^2 + 3x)` at x = 1.02.
उत्तर
f(x) = `sqrt(x^2 + 3x)`
∴ f'(x) = `d/dx(sqrt(x^2 + 3x))`
= `(1)/(2sqrt(x^2 + 3x)).d/dx(x^2 + 3x)`
= `(1)/(2sqrt(x^2 + 3x)) xx (2x + 3 xx 1)`
= `(2x + 3)/(2sqrt(x^2 + 1)`
Take a = 1 and h = 0.02.
Then f(a) = f(1) = `sqrt(1^2 + 3(1)` = 2
and
f'(a) = f'(1)
= `(2(1) + 3)/(2sqrt(1^2 + 3(1)`
= `(5)/(2 xx 2)`
= `(5)/(4)`
The formula for approximation is
f(a + h) ≑ f(a) + h.f'(a)
∴ f(1.02) = f(1 + 0.02)
≑ f(1) + (0.02)f'(1)
≑ `2 + 0.02 xx(5)/(4)`
≑ `(8 + 0.1)/(4)`
= `(8.1)/(4)`
= 2.025
∴ f1.02) ≑ 2.025.
APPEARS IN
संबंधित प्रश्न
Find the approximate value of ` sqrt8.95 `
Find the approximate value of cos (60° 30').
(Given: 1° = 0.0175c, sin 60° = 0.8660)
Using differentials, find the approximate value of the following up to 3 places of decimal
`sqrt(25.3)`
Using differentials, find the approximate value of the following up to 3 places of decimal
`sqrt(49.5)`
Using differentials, find the approximate value of the following up to 3 places of decimal
`(0.009)^(1/3)`
Using differentials, find the approximate value of the following up to 3 places of decimal
`(0.999)^(1/10)`
Using differentials, find the approximate value of the following up to 3 places of decimal
`(401)^(1/2)`
Using differentials, find the approximate value of the following up to 3 places of decimal
`(26.57)^(1/3)`
Using differentials, find the approximate value of the following up to 3 places of decimal
`(81.5)^(1/4)`
Using differentials, find the approximate value of the following up to 3 places of decimal
`(32.15)^(1/5)`
Find the approximate change in the volume V of a cube of side x metres caused by increasing side by 1%.
If the radius of a sphere is measured as 7 m with an error of 0.02m, then find the approximate error in calculating its volume.
If the radius of a sphere is measured as 9 m with an error of 0.03 m, then find the approximate error in calculating in surface area
Using differentials, find the approximate value of each of the following.
`(17/81)^(1/4)`
Using differentials, find the approximate value of each of the following.
`(33)^(1/5)`
Show that the function given by `f(x) = (log x)/x` has maximum at x = e.
The normal at the point (1, 1) on the curve 2y + x2 = 3 is
(A) x + y = 0
(B) x − y = 0
(C) x + y + 1 = 0
(D) x − y = 1
The normal to the curve x2 = 4y passing (1, 2) is
(A) x + y = 3
(B) x − y = 3
(C) x + y = 1
(D) x − y = 1
Find the approximate change in the volume ‘V’ of a cube of side x metres caused by decreasing the side by 1%.
If y = sin x and x changes from π/2 to 22/14, what is the approximate change in y ?
The radius of a sphere shrinks from 10 to 9.8 cm. Find approximately the decrease in its volume ?
Find the percentage error in calculating the surface area of a cubical box if an error of 1% is made in measuring the lengths of edges of the cube ?
If there is an error of 0.1% in the measurement of the radius of a sphere, find approximately the percentage error in the calculation of the volume of the sphere ?
The height of a cone increases by k%, its semi-vertical angle remaining the same. What is the approximate percentage increase (i) in total surface area, and (ii) in the volume, assuming that k is small ?
Using differential, find the approximate value of the following: \[\left( 0 . 009 \right)^\frac{1}{3}\]
Using differential, find the approximate value of the following: \[\left( 0 . 007 \right)^\frac{1}{3}\]
Using differential, find the approximate value of the \[\left( 15 \right)^\frac{1}{4}\] ?
Using differential, find the approximate value of the \[\left( 255 \right)^\frac{1}{4}\] ?
Using differential, find the approximate value of the loge 4.04, it being given that log104 = 0.6021 and log10e = 0.4343 ?
Using differential, find the approximate value of the loge 10.02, it being given that loge10 = 2.3026 ?
Using differential, find the approximate value of the log10 10.1, it being given that log10e = 0.4343 ?
Using differential, find the approximate value of the \[\cos\left( \frac{11\pi}{36} \right)\] ?
Using differential, find the approximate value of the \[\sqrt{0 . 48}\] ?
Using differential, find the approximate value of the \[\left( \frac{17}{81} \right)^\frac{1}{4}\] ?
Using differential, find the approximate value of the \[\left( 33 \right)^\frac{1}{5}\] ?
Using differential, find the approximate value of the \[\sqrt{36 . 6}\] ?
Using differential, find the approximate value of the \[\sqrt{49 . 5}\] ?
Find the approximate value of f (5.001), where f (x) = x3 − 7x2 + 15 ?
If the radius of a sphere is measured as 7 m with an error of 0.02 m, find the approximate error in calculating its volume ?
Find the approximate change in the value V of a cube of side x metres caused by increasing the side by 1% ?
For the function y = x2, if x = 10 and ∆x = 0.1. Find ∆ y ?
If y = loge x, then find ∆y when x = 3 and ∆x = 0.03 ?
If there is an error of a% in measuring the edge of a cube, then percentage error in its surface is
A sphere of radius 100 mm shrinks to radius 98 mm, then the approximate decrease in its volume is
If the ratio of base radius and height of a cone is 1 : 2 and percentage error in radius is λ %, then the error in its volume is
The pressure P and volume V of a gas are connected by the relation PV1/4 = constant. The percentage increase in the pressure corresponding to a deminition of 1/2 % in the volume is
If y = xn then the ratio of relative errors in y and x is
The approximate value of (33)1/5 is
The circumference of a circle is measured as 28 cm with an error of 0.01 cm. The percentage error in the area is
Find the approximate value of f(3.02), up to 2 places of decimal, where f(x) = 3x2 + 5x + 3.
Find the approximate values of : `sqrt(8.95)`
Find the approximate values of : `root(3)(28)`
Find the approximate values of : `root(5)(31.98)`
Find the approximate values of : (3.97)4
Find the approximate values of : sin 61° , given that 1° = 0.0174c, `sqrt(3) = 1.732`
Find the approximate values of : cos(60° 30°), given that 1° = 0.0175°, `sqrt(3) = 1.732`
Find the approximate values of : cot–1 (0.999)
Find the approximate values of : e0.995, given that e = 2.7183.
Find the approximate values of : loge(101), given that loge10 = 2.3026.
Find the approximate values of : f(x) = x3 + 5x2 – 7x + 10 at x = 1.12.
Solve the following : Find the approximate value of cos–1 (0.51), given π = 3.1416, `(2)/sqrt(3)` = 1.1547.
Using differentiation, approximate value of f(x) = x2 - 2x + 1 at x = 2.99 is ______.
Find the approximate value of (1.999)5.
If y = x4 – 10 and if x changes from 2 to 1.99, what is the change in y ______.
If the radius of a sphere is measured as 9 cm with an error of 0.03 cm, then find the approximating error in calculating its volume.
The approximate value of f(x) = x3 + 5x2 – 7x + 9 at x = 1.1 is ______.