मराठी

Using Differential, Find the Approximate Value of the ( 17 81 ) 1 4 ? - Mathematics

Advertisements
Advertisements

प्रश्न

Using differential, find the approximate value of the \[\left( \frac{17}{81} \right)^\frac{1}{4}\] ?

बेरीज

उत्तर

\[\text { Consider the function } y = f\left( x \right) = \left( x \right)^\frac{1}{4} . \]

\[\text { Let }: \]

\[ x = \frac{16}{81} \]

\[ x + ∆ x = \frac{17}{81}\]

\[\text { Then }, \]

\[ ∆ x = \frac{1}{81}\]

\[\text { For } x = \frac{16}{81}, \]

\[ y = \left( \frac{16}{81} \right)^\frac{1}{4} = \frac{2}{3}\]

\[\text { Let }: \]

\[ dx = ∆ x = \frac{1}{81}\]

\[\text { Now }, y = \left( x \right)^\frac{1}{4} \]

\[ \Rightarrow \frac{dy}{dx} = \frac{1}{4 \left( x \right)^\frac{3}{4}}\]

\[ \Rightarrow \left( \frac{dy}{dx} \right)_{x = \frac{16}{81}} = \frac{27}{32}\]

\[ \therefore ∆ y = dy = \frac{dy}{dx}dx = \frac{27}{32} \times \frac{1}{81} = \frac{1}{96} = 0 . 01042\]

\[ \Rightarrow ∆ y = 0 . 01042\]

\[ \therefore \left( \frac{17}{81} \right)^\frac{1}{4} = y + ∆ y = 0 . 6771\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 14: Differentials, Errors and Approximations - Exercise 14.1 [पृष्ठ ९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 14 Differentials, Errors and Approximations
Exercise 14.1 | Q 9.22 | पृष्ठ ९

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

Find the approximate value of ` sqrt8.95 `


Using differentials, find the approximate value of the following up to 3 places of decimal

`sqrt(25.3)`


Using differentials, find the approximate value of the following up to 3 places of decimal

`(0.009)^(1/3)`


Using differentials, find the approximate value of the following up to 3 places of decimal

`(0.999)^(1/10)`


Using differentials, find the approximate value of the following up to 3 places of decimal

`(82)^(1/4)`


Using differentials, find the approximate value of the following up to 3 places of decimal

`(81.5)^(1/4)`


Find the approximate change in the volume V of a cube of side x metres caused by increasing side by 1%.


If f (x) = 3x2 + 15x + 5, then the approximate value of (3.02) is

A. 47.66

B. 57.66

C. 67.66

D. 77.66


The approximate change in the volume of a cube of side x metres caused by increasing the side by 3% is

A. 0.06 x3 m3 

B. 0.6 x3 m3

C. 0.09 x3 m3

D. 0.9 x3 m3


The pressure p and the volume v of a gas are connected by the relation pv1.4 = const. Find the percentage error in p corresponding to a decrease of 1/2% in v .


Using differential, find the approximate value of the following:  \[\left( 0 . 009 \right)^\frac{1}{3}\]


Using differential, find the approximate value of the \[\cos\left( \frac{11\pi}{36} \right)\] ?


Using differential, find the approximate value of the \[\left( 80 \right)^\frac{1}{4}\] ?


Using differential, find the approximate value of the \[\left( 3 . 968 \right)^\frac{3}{2}\] ?


Find the approximate value of f (2.01), where f (x) = 4x2 + 5x + 2 ?


If the radius of a sphere is measured as 9 cm with an error of 0.03 m, find the approximate error in calculating its surface area ?


For the function y = x2, if x = 10 and ∆x = 0.1. Find ∆ y ?


If y = loge x, then find ∆y when x = 3 and ∆x = 0.03 ?


If there is an error of 2% in measuring the length of a simple pendulum, then percentage error in its period is


If an error of k% is made in measuring the radius of a sphere, then percentage error in its volume is


The height of a cylinder is equal to the radius. If an error of α % is made in the height, then percentage error in its volume is


For the function y = x2, if x = 10 and ∆x = 0.1. Find ∆y.


Find the approximate values of : cos(60° 30°), given that 1° = 0.0175°, `sqrt(3) = 1.732`


Find the approximate values of : tan (45° 40'), given that 1° = 0.0175°.


Find the approximate values of : cot–1 (0.999)


Find the approximate values of : e2.1, given that e2 = 7.389


Find the approximate values of : loge(101), given that loge10 = 2.3026.


Find the approximate values of : f(x) = x3 + 5x2 – 7x + 10 at x = 1.12.


Solve the following : Find the approximate value of cos–1 (0.51), given π = 3.1416, `(2)/sqrt(3)` = 1.1547.


Using differentiation, approximate value of f(x) = x2 - 2x + 1 at x = 2.99 is ______.


If the radius of a sphere is measured as 9 m with an error of 0.03 m. the find the approximate error in calculating its surface area


If `(x) = 3x^2 + 15x + 5`, then the approximate value of `f(3.02)` is


Find the approximate value of sin (30° 30′). Give that 1° = 0.0175c and cos 30° = 0.866


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×