Advertisements
Advertisements
प्रश्न
Using differential, find the approximate value of the \[\left( \frac{17}{81} \right)^\frac{1}{4}\] ?
उत्तर
\[\text { Consider the function } y = f\left( x \right) = \left( x \right)^\frac{1}{4} . \]
\[\text { Let }: \]
\[ x = \frac{16}{81} \]
\[ x + ∆ x = \frac{17}{81}\]
\[\text { Then }, \]
\[ ∆ x = \frac{1}{81}\]
\[\text { For } x = \frac{16}{81}, \]
\[ y = \left( \frac{16}{81} \right)^\frac{1}{4} = \frac{2}{3}\]
\[\text { Let }: \]
\[ dx = ∆ x = \frac{1}{81}\]
\[\text { Now }, y = \left( x \right)^\frac{1}{4} \]
\[ \Rightarrow \frac{dy}{dx} = \frac{1}{4 \left( x \right)^\frac{3}{4}}\]
\[ \Rightarrow \left( \frac{dy}{dx} \right)_{x = \frac{16}{81}} = \frac{27}{32}\]
\[ \therefore ∆ y = dy = \frac{dy}{dx}dx = \frac{27}{32} \times \frac{1}{81} = \frac{1}{96} = 0 . 01042\]
\[ \Rightarrow ∆ y = 0 . 01042\]
\[ \therefore \left( \frac{17}{81} \right)^\frac{1}{4} = y + ∆ y = 0 . 6771\]
APPEARS IN
संबंधित प्रश्न
Find the approximate value of ` sqrt8.95 `
Find the approximate value of cos (60° 30').
(Given: 1° = 0.0175c, sin 60° = 0.8660)
Using differentials, find the approximate value of the following up to 3 places of decimal
`sqrt(25.3)`
Using differentials, find the approximate value of the following up to 3 places of decimal
`(15)^(1/4)`
Using differentials, find the approximate value of the following up to 3 places of decimal
`(255)^(1/4)`
Find the approximate value of f (2.01), where f (x) = 4x2 + 5x + 2
Find the approximate value of f (5.001), where f (x) = x3 − 7x2 + 15.
If the radius of a sphere is measured as 7 m with an error of 0.02m, then find the approximate error in calculating its volume.
Show that the function given by `f(x) = (log x)/x` has maximum at x = e.
Find the approximate value of log10 (1016), given that log10e = 0⋅4343.
The height of a cone increases by k%, its semi-vertical angle remaining the same. What is the approximate percentage increase (i) in total surface area, and (ii) in the volume, assuming that k is small ?
Using differential, find the approximate value of the following: \[\left( 0 . 009 \right)^\frac{1}{3}\]
Using differential, find the approximate value of the \[\sin\left( \frac{22}{14} \right)\] ?
Using differential, find the approximate value of the \[\cos\left( \frac{11\pi}{36} \right)\] ?
Using differential, find the approximate value of the \[\sqrt{0 . 48}\] ?
Using differential, find the approximate value of the \[\sqrt{36 . 6}\] ?
Using differential, find the approximate value of the \[\sqrt{49 . 5}\] ?
Find the approximate change in the surface area of a cube of side x metres caused by decreasing the side by 1% ?
If the radius of a sphere is measured as 7 m with an error of 0.02 m, find the approximate error in calculating its volume ?
Find the approximate change in the value V of a cube of side x metres caused by increasing the side by 1% ?
If the relative error in measuring the radius of a circular plane is α, find the relative error in measuring its area ?
If there is an error of a% in measuring the edge of a cube, then percentage error in its surface is
The height of a cylinder is equal to the radius. If an error of α % is made in the height, then percentage error in its volume is
While measuring the side of an equilateral triangle an error of k % is made, the percentage error in its area is
Find the approximate values of : cos(60° 30°), given that 1° = 0.0175°, `sqrt(3) = 1.732`
Find the approximate values of : tan (45° 40'), given that 1° = 0.0175°.
Find the approximate values of : 32.01, given that log 3 = 1.0986
Find the approximate values of : loge(9.01), given that log 3 = 1.0986.
The approximate value of the function f(x) = x3 − 3x + 5 at x = 1.99 is ____________.
Using differentials, find the approximate value of `sqrt(0.082)`
Find the approximate value of (1.999)5.
If y = x4 – 10 and if x changes from 2 to 1.99, what is the change in y ______.
Find the approximate value of f(3.02), where f(x) = 3x2 + 5x + 3
If `(x) = 3x^2 + 15x + 5`, then the approximate value of `f(3.02)` is
Find the approximate value of sin (30° 30′). Give that 1° = 0.0175c and cos 30° = 0.866
Find the approximate value of tan−1 (1.002).
[Given: π = 3.1416]