हिंदी

Using Differential, Find the Approximate Value of the ( 17 81 ) 1 4 ? - Mathematics

Advertisements
Advertisements

प्रश्न

Using differential, find the approximate value of the \[\left( \frac{17}{81} \right)^\frac{1}{4}\] ?

योग

उत्तर

\[\text { Consider the function } y = f\left( x \right) = \left( x \right)^\frac{1}{4} . \]

\[\text { Let }: \]

\[ x = \frac{16}{81} \]

\[ x + ∆ x = \frac{17}{81}\]

\[\text { Then }, \]

\[ ∆ x = \frac{1}{81}\]

\[\text { For } x = \frac{16}{81}, \]

\[ y = \left( \frac{16}{81} \right)^\frac{1}{4} = \frac{2}{3}\]

\[\text { Let }: \]

\[ dx = ∆ x = \frac{1}{81}\]

\[\text { Now }, y = \left( x \right)^\frac{1}{4} \]

\[ \Rightarrow \frac{dy}{dx} = \frac{1}{4 \left( x \right)^\frac{3}{4}}\]

\[ \Rightarrow \left( \frac{dy}{dx} \right)_{x = \frac{16}{81}} = \frac{27}{32}\]

\[ \therefore ∆ y = dy = \frac{dy}{dx}dx = \frac{27}{32} \times \frac{1}{81} = \frac{1}{96} = 0 . 01042\]

\[ \Rightarrow ∆ y = 0 . 01042\]

\[ \therefore \left( \frac{17}{81} \right)^\frac{1}{4} = y + ∆ y = 0 . 6771\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 14: Differentials, Errors and Approximations - Exercise 14.1 [पृष्ठ ९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 14 Differentials, Errors and Approximations
Exercise 14.1 | Q 9.22 | पृष्ठ ९

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Find the approximate value of ` sqrt8.95 `


Find the approximate value of cos (60° 30').

(Given: 1° = 0.0175c, sin 60° = 0.8660)


Using differentials, find the approximate value of the following up to 3 places of decimal

`sqrt(25.3)`


Using differentials, find the approximate value of the following up to 3 places of decimal

`(15)^(1/4)`


Using differentials, find the approximate value of the following up to 3 places of decimal

`(255)^(1/4)`


Find the approximate value of f (2.01), where f (x) = 4x2 + 5x + 2


Find the approximate value of f (5.001), where f (x) = x3 − 7x2 + 15.


If the radius of a sphere is measured as 7 m with an error of 0.02m, then find the approximate error in calculating its volume.


Show that the function given by `f(x) = (log x)/x` has maximum at x = e.


Find the approximate value of log10 (1016), given that log10e = 0⋅4343.


The height of a cone increases by k%, its semi-vertical angle remaining the same. What is the approximate percentage increase (i) in total surface area, and (ii) in the volume, assuming that k is small ?


Using differential, find the approximate value of the following:  \[\left( 0 . 009 \right)^\frac{1}{3}\]


Using differential, find the approximate value of the \[\sin\left( \frac{22}{14} \right)\] ?


Using differential, find the approximate value of the \[\cos\left( \frac{11\pi}{36} \right)\] ?


Using differential, find the approximate value of the  \[\sqrt{0 . 48}\] ?


Using differential, find the approximate value of the \[\sqrt{36 . 6}\] ?


Using differential, find the approximate value of the \[\sqrt{49 . 5}\] ?


Find the approximate change in the surface area of a cube of side x metres caused by decreasing the side by 1% ?


If the radius of a sphere is measured as 7 m with an error of 0.02 m, find the approximate error in calculating its volume ?


Find the approximate change in the value V of a cube of side x metres caused by increasing the side by 1% ?


If the relative error in measuring the radius of a circular plane is α, find the relative error in measuring its area ?


If there is an error of a% in measuring the edge of a cube, then percentage error in its surface is


The height of a cylinder is equal to the radius. If an error of α % is made in the height, then percentage error in its volume is


While measuring the side of an equilateral triangle an error of k % is made, the percentage error in its area is


Find the approximate values of : cos(60° 30°), given that 1° = 0.0175°, `sqrt(3) = 1.732`


Find the approximate values of : tan (45° 40'), given that 1° = 0.0175°.


Find the approximate values of : 32.01, given that log 3 = 1.0986


Find the approximate values of : loge(9.01), given that log 3 = 1.0986.


The approximate value of the function f(x) = x3 − 3x + 5 at x = 1.99 is ____________.


Using differentials, find the approximate value of `sqrt(0.082)`


Find the approximate value of (1.999)5.


If y = x4 – 10 and if x changes from 2 to 1.99, what is the change in y ______.


Find the approximate value of f(3.02), where f(x) = 3x2 + 5x + 3


If `(x) = 3x^2 + 15x + 5`, then the approximate value of `f(3.02)` is


Find the approximate value of sin (30° 30′). Give that 1° = 0.0175c and cos 30° = 0.866


Find the approximate value of tan−1 (1.002).
[Given: π = 3.1416]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×