हिंदी

Show that the function given by f(x)=logxx has maximum at x = e. - Mathematics

Advertisements
Advertisements

प्रश्न

Show that the function given by `f(x) = (log x)/x` has maximum at x = e.

योग

उत्तर

We have f (x) = `log x/x, x > 0`

Differentiating w.r.t. x , we get

⇒ `f' (x) = (x(1/x) - (log x)*1)/x^2`

`= (1 - log x)/x^2`

For maximum / minimum, f (x) = 0

⇒ `(1 - log x)/x^2 = 0`

⇒ log x = 1          .....(∵x2 ≠ 0)

⇒ x = e

Again differentiating w.r.t x, we get

`f'' (x) = (x^2 (-1/x) - (1 - log x) 2x)/x^4`

`= (-x - 2x + 2x log x)/x^4`

`= (x (2 log x - 3))/x^4`

`= (2 log x - 3)/x^3`

Also, f'' (e) = `(2 log e - 3)/e^3`

`= (2.1 - 3)/e^3`              ....(∵ loge e = 1)

`= -1/e^3 < 0`

⇒ f (x) has a maximum value at x = e.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 6: Application of Derivatives - Exercise 6.6 [पृष्ठ २४२]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 12
अध्याय 6 Application of Derivatives
Exercise 6.6 | Q 2 | पृष्ठ २४२

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Using differentials, find the approximate value of the following up to 3 places of decimal

`sqrt(25.3)`


Using differentials, find the approximate value of the following up to 3 places of decimal

`(0.009)^(1/3)`


Using differentials, find the approximate value of the following up to 3 places of decimal

`(0.999)^(1/10)`


Using differentials, find the approximate value of the following up to 3 places of decimal

`(32.15)^(1/5)`


Find the approximate value of f (5.001), where f (x) = x3 − 7x2 + 15.


Find the approximate change in the volume V of a cube of side x metres caused by increasing side by 1%.


If f (x) = 3x2 + 15x + 5, then the approximate value of (3.02) is

A. 47.66

B. 57.66

C. 67.66

D. 77.66


Using differentials, find the approximate value of each of the following.

`(33)^(1/5)`


Find the approximate value of log10 (1016), given that log10e = 0⋅4343.


If there is an error of 0.1% in the measurement of the radius of a sphere, find approximately the percentage error in the calculation of the volume of the sphere ?


1 Using differential, find the approximate value of the following:

\[\sqrt{25 . 02}\]


Using differentials, find the approximate values of the cos 61°, it being given that sin60° = 0.86603 and 1° = 0.01745 radian ?


Using differential, find the approximate value of the \[\frac{1}{\sqrt{25 . 1}}\] ?


Using differential, find the approximate value of the \[\left( 66 \right)^\frac{1}{3}\] ?


Using differential, find the approximate value of the \[\left( 82 \right)^\frac{1}{4}\] ?


Using differential, find the approximate value of the \[\sqrt{49 . 5}\] ?


Find the approximate value of f (5.001), where f (x) = x3 − 7x2 + 15 ? 


Find the approximate change in the value V of a cube of side x metres caused by increasing the side by 1% ?


If the percentage error in the radius of a sphere is α, find the percentage error in its volume ?


If there is an error of a% in measuring the edge of a cube, then percentage error in its surface is


If an error of k% is made in measuring the radius of a sphere, then percentage error in its volume is


The approximate value of (33)1/5 is


Find the approximate value of f(3.02), up to 2 places of decimal, where f(x) = 3x2 + 5x + 3.


Find the approximate values of : `root(3)(28)`


Find the approximate values of : sin 61° , given that 1° = 0.0174c, `sqrt(3) = 1.732`


Find the approximate values of : sin (29° 30'), given that 1°= 0.0175°, `sqrt(3) = 1.732`


Find the approximate values of : cot–1 (0.999)


Find the approximate values of : e0.995, given that e = 2.7183.


Find the approximate values of : f(x) = x3 + 5x2 – 7x + 10 at x = 1.12.


Solve the following : Find the approximate value of cos–1 (0.51), given π = 3.1416, `(2)/sqrt(3)` = 1.1547.


The approximate value of the function f(x) = x3 − 3x + 5 at x = 1.99 is ____________.


Using differentials, find the approximate value of `sqrt(0.082)`


Find the approximate volume of metal in a hollow spherical shell whose internal and external radii are 3 cm and 3.0005 cm respectively


If the radius of a sphere is measured as 9 cm with an error of 0.03 cm, then find the approximating error in calculating its volume.


Find the approximate value of f(3.02), where f(x) = 3x2 + 5x + 3


Find the approximate value of sin (30° 30′). Give that 1° = 0.0175c and cos 30° = 0.866


Find the approximate value of tan−1 (1.002).
[Given: π = 3.1416]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×