Advertisements
Advertisements
प्रश्न
Using differentials, find the approximate values of the cos 61°, it being given that sin60° = 0.86603 and 1° = 0.01745 radian ?
उत्तर
\[\text { Consider the function }y = f\left( x \right) = \cos x^\circ . \]
\[\text { Let }: \]
\[ x = 60^\circ \]
\[ x + ∆ x = 61^\circ\]
\[\text { Then }, \]
\[ ∆ x = 1^\circ = 0 . 01745\]
\[\text { For } x = 60^\circ, \]
\[ y = \cos 60^\circ = 0 . 5\]
\[\text { Let }: \]
\[ dx = ∆ x = 0 . 01745\]
\[\text { Now }, y = \cos x\]
\[ \Rightarrow \frac{dy}{dx} = - \sin x\]
\[ \Rightarrow \left( \frac{dy}{dx} \right)_{x = 60} = - 0 . 86603\]
\[ \therefore ∆ y = dy = \frac{dy}{dx}dx = - 0 . 86603 \times 0 . 01745 = - 0 . 01511\]
\[ \Rightarrow ∆ y = - 0 . 01511\]
\[ \therefore \cos 61^\circ = y + ∆ y = 0 . 48488 \approx 0 . 48489\]
APPEARS IN
संबंधित प्रश्न
Using differentials, find the approximate value of the following up to 3 places of decimal
`(401)^(1/2)`
Using differentials, find the approximate value of the following up to 3 places of decimal
`(3.968)^(3/2)`
If f (x) = 3x2 + 15x + 5, then the approximate value of f (3.02) is
A. 47.66
B. 57.66
C. 67.66
D. 77.66
Using differentials, find the approximate value of each of the following.
`(17/81)^(1/4)`
Show that the function given by `f(x) = (log x)/x` has maximum at x = e.
Find the percentage error in calculating the surface area of a cubical box if an error of 1% is made in measuring the lengths of edges of the cube ?
Using differential, find the approximate value of the following: \[\left( 0 . 009 \right)^\frac{1}{3}\]
Using differential, find the approximate value of the following: \[\left( 0 . 007 \right)^\frac{1}{3}\]
Using differential, find the approximate value of the loge 10.02, it being given that loge10 = 2.3026 ?
Using differential, find the approximate value of the log10 10.1, it being given that log10e = 0.4343 ?
Using differential, find the approximate value of the \[\frac{1}{\sqrt{25 . 1}}\] ?
Using differential, find the approximate value of the \[\left( 80 \right)^\frac{1}{4}\] ?
Using differential, find the approximate value of the \[\left( 66 \right)^\frac{1}{3}\] ?
Using differential, find the approximate value of the \[\left( 82 \right)^\frac{1}{4}\] ?
Using differential, find the approximate value of the \[\left( 3 . 968 \right)^\frac{3}{2}\] ?
Find the approximate value of f (2.01), where f (x) = 4x2 + 5x + 2 ?
Find the approximate value of log10 1005, given that log10 e = 0.4343 ?
If the radius of a sphere is measured as 7 m with an error of 0.02 m, find the approximate error in calculating its volume ?
Find the approximate change in the value V of a cube of side x metres caused by increasing the side by 1% ?
If y = loge x, then find ∆y when x = 3 and ∆x = 0.03 ?
Find the approximate value of f(3.02), up to 2 places of decimal, where f(x) = 3x2 + 5x + 3.
Find the approximate values of : (3.97)4
Find the approximate values of : tan–1(0.999)
Find the approximate values of : cot–1 (0.999)
Find the approximate values of : e0.995, given that e = 2.7183.
Find the approximate values of : loge(9.01), given that log 3 = 1.0986.
Find the approximate values of : f(x) = x3 – 3x + 5 at x = 1.99.
Find the approximate value of the function f(x) = `sqrt(x^2 + 3x)` at x = 1.02.
Solve the following : Find the approximate value of cos–1 (0.51), given π = 3.1416, `(2)/sqrt(3)` = 1.1547.
The approximate value of the function f(x) = x3 − 3x + 5 at x = 1.99 is ____________.
Find the approximate value of (1.999)5.
If y = x4 – 10 and if x changes from 2 to 1.99, what is the change in y ______.
Find the approximate value of f(3.02), where f(x) = 3x2 + 5x + 3
Find the approximate value of sin (30° 30′). Give that 1° = 0.0175c and cos 30° = 0.866
Find the approximate value of tan−1 (1.002).
[Given: π = 3.1416]