हिंदी

Find the Percentage Error in Calculating the Surface Area of a Cubical Box If an Error of 1% is Made in Measuring the Lengths of Edges of the Cube ? - Mathematics

Advertisements
Advertisements

प्रश्न

Find the percentage error in calculating the surface area of a cubical box if an error of 1% is made in measuring the lengths of edges of the cube ?

योग

उत्तर

Let x be the edge of the cube and y be the surface area.

\[y = x^2 \]

\[\text { Let } ∆ x \text { be the error in x and } ∆ y \text { be the corresponding error in } y . \]

\[\text { We have }\]

\[\frac{∆ x}{x} \times 100 = 1\]

\[ \Rightarrow 2x = \frac{x}{100} \left[ \text { Let } dx = ∆ x \right]\]

\[\text { Now }, y = x^2 \]

\[ \Rightarrow \frac{dy}{dx} = 2x\]

\[ \therefore ∆ y = \frac{dy}{dx} \times ∆ x = 2x \times \frac{x}{100}\]

\[ \Rightarrow ∆ y = 2\frac{x^2}{100}\]

\[ \Rightarrow ∆ y = 2\frac{y}{100}\]

\[ \Rightarrow \frac{∆ y}{y} = \frac{2}{100}\]

\[ \Rightarrow \frac{∆ y}{y} \times 100 = 2\]

Hence, the percentage error in calculating the surface area is 2.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 14: Differentials, Errors and Approximations - Exercise 14.1 [पृष्ठ ९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 14 Differentials, Errors and Approximations
Exercise 14.1 | Q 4 | पृष्ठ ९

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Using differentials, find the approximate value of the following up to 3 places of decimal

`(255)^(1/4)`


The approximate change in the volume of a cube of side x metres caused by increasing the side by 3% is

A. 0.06 x3 m3 

B. 0.6 x3 m3

C. 0.09 x3 m3

D. 0.9 x3 m3


Show that the function given by `f(x) = (log x)/x` has maximum at x = e.


The normal to the curve x2 = 4y passing (1, 2) is

(A) x + y = 3

(B) x − y = 3

(C) x + = 1

(D) x − = 1


Find the approximate change in the volume ‘V’ of a cube of side x metres caused by decreasing the side by 1%.


The radius of a sphere shrinks from 10 to 9.8 cm. Find approximately the decrease in its volume ?


The height of a cone increases by k%, its semi-vertical angle remaining the same. What is the approximate percentage increase (i) in total surface area, and (ii) in the volume, assuming that k is small ?


Show that the relative error in computing the volume of a sphere, due to an error in measuring the radius, is approximately equal to three times the relative error in the radius ?


Using differential, find the approximate value of the following: \[\left( 0 . 007 \right)^\frac{1}{3}\]


Using differential, find the approximate value of the \[\sin\left( \frac{22}{14} \right)\] ?


Using differential, find the approximate value of the \[\left( 80 \right)^\frac{1}{4}\] ?


Using differential, find the approximate value of the \[\left( 3 . 968 \right)^\frac{3}{2}\] ?


Using differential, find the approximate value of the \[\left( 1 . 999 \right)^5\] ?


Using differential, find the approximate value of the \[{25}^\frac{1}{3}\] ?


Find the approximate change in the surface area of a cube of side x metres caused by decreasing the side by 1% ?


Find the approximate change in the value V of a cube of side x metres caused by increasing the side by 1% ?


While measuring the side of an equilateral triangle an error of k % is made, the percentage error in its area is


If loge 4 = 1.3868, then loge 4.01 =


A sphere of radius 100 mm shrinks to radius 98 mm, then the approximate decrease in its volume is


The pressure P and volume V of a gas are connected by the relation PV1/4 = constant. The percentage increase in the pressure corresponding to a deminition of 1/2 % in the volume is

 


If y = xn  then the ratio of relative errors in y and x is


The circumference of a circle is measured as 28 cm with an error of 0.01 cm. The percentage error in the area is

 


For the function y = x2, if x = 10 and ∆x = 0.1. Find ∆y.


Find the approximate values of : `root(3)(28)`


Find the approximate values of : tan–1(0.999)


Find the approximate values of : e0.995, given that e = 2.7183.


Find the approximate values of : e2.1, given that e2 = 7.389


Find the approximate values of : f(x) = x3 + 5x2 – 7x + 10 at x = 1.12.


Find the approximate value of the function f(x) = `sqrt(x^2 + 3x)` at x = 1.02.


Solve the following : Find the approximate value of cos–1 (0.51), given π = 3.1416, `(2)/sqrt(3)` = 1.1547.


If the radius of a sphere is measured as 9 cm with an error of 0.03 cm, then find the approximating error in calculating its volume.


Find the approximate value of f(3.02), where f(x) = 3x2 + 5x + 3


The approximate change in volume of a cube of side `x` meters coverd by increasing the side by 3% is


The approximate value of f(x) = x3 + 5x2 – 7x + 9 at x = 1.1 is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×