Advertisements
Advertisements
प्रश्न
The radius of a sphere shrinks from 10 to 9.8 cm. Find approximately the decrease in its volume ?
उत्तर
\[\text { Let r be the radius of the sphere }. \]
\[ r = 10 cm\]
\[r + ∆ r = 9 . 8 cm\]
\[ \Rightarrow ∆ r = 10 . 0 - 9 . 8 = 0 . 2 cm\]
\[\text { Volume of the sphere,} V = \frac{4}{3}\pi r^3 \]
\[ \Rightarrow \frac{dV}{dr} = \frac{4}{3}\pi \times 3 r^2 = 4\pi r^2 \]
\[ \Rightarrow \left( \frac{dV}{dr} \right)_{r = 10 cm} = 4\pi \left( 10 \right)^2 = 400\pi {cm}^3 /cm\]
\[\text{ Change in the volume of the sphere,} ∆ V = \frac{dV}{dr} \times dr = 400\pi \times 0 . 2 = 80\pi \ {cm}^3\]
APPEARS IN
संबंधित प्रश्न
Find the approximate value of ` sqrt8.95 `
Find the approximate value of cos (60° 30').
(Given: 1° = 0.0175c, sin 60° = 0.8660)
Using differentials, find the approximate value of the following up to 3 places of decimal
`(255)^(1/4)`
Using differentials, find the approximate value of the following up to 3 places of decimal
`(0.0037)^(1/2)`
Find the approximate value of f (5.001), where f (x) = x3 − 7x2 + 15.
If the radius of a sphere is measured as 7 m with an error of 0.02m, then find the approximate error in calculating its volume.
The approximate change in the volume of a cube of side x metres caused by increasing the side by 3% is
A. 0.06 x3 m3
B. 0.6 x3 m3
C. 0.09 x3 m3
D. 0.9 x3 m3
The normal to the curve x2 = 4y passing (1, 2) is
(A) x + y = 3
(B) x − y = 3
(C) x + y = 1
(D) x − y = 1
The points on the curve 9y2 = x3, where the normal to the curve makes equal intercepts with the axes are
(A)`(4, +- 8/3)`
(B) `(4,(-8)/3)`
(C)`(4, +- 3/8)`
(D) `(+-4, 3/8)`
A circular metal plate expends under heating so that its radius increases by k%. Find the approximate increase in the area of the plate, if the radius of the plate before heating is 10 cm.
The pressure p and the volume v of a gas are connected by the relation pv1.4 = const. Find the percentage error in p corresponding to a decrease of 1/2% in v .
1 Using differential, find the approximate value of the following:
\[\sqrt{25 . 02}\]
Using differential, find the approximate value of the loge 4.04, it being given that log104 = 0.6021 and log10e = 0.4343 ?
Using differential, find the approximate value of the log10 10.1, it being given that log10e = 0.4343 ?
Using differential, find the approximate value of the \[\frac{1}{\sqrt{25 . 1}}\] ?
Using differential, find the approximate value of the \[\sin\left( \frac{22}{14} \right)\] ?
Using differential, find the approximate value of the \[\sqrt{26}\] ?
Using differential, find the approximate value of the \[\sqrt{0 . 48}\] ?
Using differential, find the approximate value of the \[\left( 33 \right)^\frac{1}{5}\] ?
Using differential, find the approximate value of the \[\sqrt{36 . 6}\] ?
A piece of ice is in the form of a cube melts so that the percentage error in the edge of cube is a, then find the percentage error in its volume ?
The height of a cylinder is equal to the radius. If an error of α % is made in the height, then percentage error in its volume is
If y = xn then the ratio of relative errors in y and x is
The approximate value of (33)1/5 is
For the function y = x2, if x = 10 and ∆x = 0.1. Find ∆y.
Find the approximate values of : `sqrt(8.95)`
Find the approximate values of : `root(5)(31.98)`
Find the approximate values of : sin 61° , given that 1° = 0.0174c, `sqrt(3) = 1.732`
Find the approximate values of : tan (45° 40'), given that 1° = 0.0175°.
Find the approximate values of : cot–1 (0.999)
Find the approximate values of : e2.1, given that e2 = 7.389
Find the approximate values of : f(x) = x3 – 3x + 5 at x = 1.99.
Find the approximate values of : f(x) = x3 + 5x2 – 7x + 10 at x = 1.12.
Find the approximate value of the function f(x) = `sqrt(x^2 + 3x)` at x = 1.02.
Find the approximate volume of metal in a hollow spherical shell whose internal and external radii are 3 cm and 3.0005 cm respectively