हिंदी

Find the approximate values of : cot–1 (0.999) - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Find the approximate values of : cot–1 (0.999)

योग

उत्तर

Let f(x) = cot–1 x

∴ f'(x) = `d/dx(cot^-1x) = (-1)/(1 + x^2)`

Take a =  and h = – 0.001

Then f(a) = f(1) = cot–11 = `pi/(4)`

and f'(a) = f'(1) = `(-1)/(1 + 1^2) = (-1)/(2)`
The formula for appromation is
f(a + h) ≑ f(a) + h.f'(a)
∴ cot–1 (0.999)
= f(0.999)
= f(1 – 0.001)
≑ f(1) – (0.001).f'(1)

≑ `pi/(4) - (0001).((-1)/2)`

= `pi/(4) + 0.005`

∴ cot–1 (0.999) ≑ `pi/(4) + 0.0005`.
Remark: The answer can also be given as :

cot–1 (0.999) ≑ `(3.1416)/(4) + 0.0005`

≑ 0.7854 + 0.0005
= 0.7859.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 2: Applications of Derivatives - Exercise 2.2 [पृष्ठ ७५]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
अध्याय 2 Applications of Derivatives
Exercise 2.2 | Q 3.2 | पृष्ठ ७५

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Find the approximate value of ` sqrt8.95 `


Using differentials, find the approximate value of the following up to 3 places of decimal

`sqrt(49.5)`


Using differentials, find the approximate value of the following up to 3 places of decimal

`(0.999)^(1/10)`


Using differentials, find the approximate value of the following up to 3 places of decimal

`(15)^(1/4)`


Using differentials, find the approximate value of the following up to 3 places of decimal

`(32.15)^(1/5)`


Find the approximate value of f (5.001), where f (x) = x3 − 7x2 + 15.


Find the approximate change in the volume V of a cube of side x metres caused by increasing side by 1%.


If the radius of a sphere is measured as 9 m with an error of 0.03 m, then find the approximate error in calculating in surface area


If f (x) = 3x2 + 15x + 5, then the approximate value of (3.02) is

A. 47.66

B. 57.66

C. 67.66

D. 77.66


The approximate change in the volume of a cube of side x metres caused by increasing the side by 3% is

A. 0.06 x3 m3 

B. 0.6 x3 m3

C. 0.09 x3 m3

D. 0.9 x3 m3


Using differentials, find the approximate value of each of the following.

`(17/81)^(1/4)`

 


Using differentials, find the approximate value of each of the following.

`(33)^(1/5)`


Show that the function given by `f(x) = (log x)/x` has maximum at x = e.


The normal to the curve x2 = 4y passing (1, 2) is

(A) x + y = 3

(B) x − y = 3

(C) x + = 1

(D) x − = 1


Show that the relative error in computing the volume of a sphere, due to an error in measuring the radius, is approximately equal to three times the relative error in the radius ?


1 Using differential, find the approximate value of the following:

\[\sqrt{25 . 02}\]


Using differential, find the approximate value of the following:  \[\left( 0 . 009 \right)^\frac{1}{3}\]


Using differential, find the approximate value of the \[\left( 15 \right)^\frac{1}{4}\] ?


Using differential, find the approximate value of the \[\left( 255 \right)^\frac{1}{4}\] ?


Using differential, find the approximate value of the \[\frac{1}{(2 . 002 )^2}\] ?


Using differential, find the approximate value of the  log10 10.1, it being given that log10e = 0.4343 ?


Using differentials, find the approximate values of the cos 61°, it being given that sin60° = 0.86603 and 1° = 0.01745 radian ?


Using differential, find the approximate value of the \[\frac{1}{\sqrt{25 . 1}}\] ?


Using differential, find the approximate value of the \[\sin\left( \frac{22}{14} \right)\] ?


Using differential, find the approximate value of the \[\left( 80 \right)^\frac{1}{4}\] ?


Using differential, find the approximate value of the  \[\sqrt{37}\] ?


Using differential, find the approximate value of the \[\left( 82 \right)^\frac{1}{4}\] ?


Using differential, find the approximate value of the \[\left( \frac{17}{81} \right)^\frac{1}{4}\] ?


Using differential, find the approximate value of the \[\sqrt{36 . 6}\] ?


Find the approximate value of f (2.01), where f (x) = 4x2 + 5x + 2 ?


Find the approximate change in the surface area of a cube of side x metres caused by decreasing the side by 1% ?


Find the approximate change in the value V of a cube of side x metres caused by increasing the side by 1% ?


For the function y = x2, if x = 10 and ∆x = 0.1. Find ∆ y ?


If y = loge x, then find ∆y when x = 3 and ∆x = 0.03 ?


If the relative error in measuring the radius of a circular plane is α, find the relative error in measuring its area ?


If there is an error of a% in measuring the edge of a cube, then percentage error in its surface is


If an error of k% is made in measuring the radius of a sphere, then percentage error in its volume is


The height of a cylinder is equal to the radius. If an error of α % is made in the height, then percentage error in its volume is


If loge 4 = 1.3868, then loge 4.01 =


If the ratio of base radius and height of a cone is 1 : 2 and percentage error in radius is λ %, then the error in its volume is


The approximate value of (33)1/5 is


Find the approximate values of : `sqrt(8.95)`


Find the approximate values of : `root(3)(28)`


Find the approximate values of : tan–1 (1.001)


Find the approximate values of : e0.995, given that e = 2.7183.


Find the approximate values of : 32.01, given that log 3 = 1.0986


Find the approximate values of : loge(9.01), given that log 3 = 1.0986.


Find the approximate values of : f(x) = x3 – 3x + 5 at x = 1.99.


Find the approximate values of : f(x) = x3 + 5x2 – 7x + 10 at x = 1.12.


The approximate value of tan (44° 30°), given that 1° = 0.0175, is ______.


Using differentiation, approximate value of f(x) = x2 - 2x + 1 at x = 2.99 is ______.


Using differentials, find the approximate value of `sqrt(0.082)`


Find the approximate value of (1.999)5.


If the radius of a sphere is measured as 9 cm with an error of 0.03 cm, then find the approximating error in calculating its volume.


Find the approximate value of f(3.02), where f(x) = 3x2 + 5x + 3


The approximate value of f(x) = x3 + 5x2 – 7x + 9 at x = 1.1 is ______.


Find the approximate value of sin (30° 30′). Give that 1° = 0.0175c and cos 30° = 0.866


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×