हिंदी

Find the Approximate Change in the Value V Of a Cube of Side X Metres Caused by Increasing the Side by 1% ? - Mathematics

Advertisements
Advertisements

प्रश्न

Find the approximate change in the value V of a cube of side x metres caused by increasing the side by 1% ?

योग

उत्तर

\[\text { Volume of the cube,} V = x^3 \]

\[\text { We have }\]

\[ ∆ x = 0 . 01x\]

\[\frac{dV}{dx} = 3 x^2 \]

\[ \Rightarrow ∆ V = dV = \frac{dV}{dx}dx = 3 x^2 \times 0 . 01x = 0 . 03 x^3 \]

\[\text { Hence, the approximate change in the value V of the cube is } 0 . 03 x^3 m^3 . \]

\[\text{Disclaimer: This solution has been created according to the question given in the book . However, the solution in the book is incorrect } . \]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 14: Differentials, Errors and Approximations - Exercise 14.1 [पृष्ठ १०]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 14 Differentials, Errors and Approximations
Exercise 14.1 | Q 16 | पृष्ठ १०

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Using differentials, find the approximate value of the following up to 3 places of decimal

`sqrt(25.3)`


Using differentials, find the approximate value of the following up to 3 places of decimal

`sqrt(0.6)`


Using differentials, find the approximate value of the following up to 3 places of decimal

`(82)^(1/4)`


Using differentials, find the approximate value of the following up to 3 places of decimal

`(3.968)^(3/2)`


Find the approximate value of f (2.01), where f (x) = 4x2 + 5x + 2


Find the approximate change in the volume V of a cube of side x metres caused by increasing side by 1%.


If the radius of a sphere is measured as 9 m with an error of 0.03 m, then find the approximate error in calculating in surface area


If f (x) = 3x2 + 15x + 5, then the approximate value of (3.02) is

A. 47.66

B. 57.66

C. 67.66

D. 77.66


The approximate change in the volume of a cube of side x metres caused by increasing the side by 3% is

A. 0.06 x3 m3 

B. 0.6 x3 m3

C. 0.09 x3 m3

D. 0.9 x3 m3


Show that the function given by `f(x) = (log x)/x` has maximum at x = e.


The pressure p and the volume v of a gas are connected by the relation pv1.4 = const. Find the percentage error in p corresponding to a decrease of 1/2% in v .


Using differential, find the approximate value of the following: \[\left( 0 . 007 \right)^\frac{1}{3}\]


Using differential, find the approximate value of the \[\sqrt{401}\] ?


Using differential, find the approximate value of the loge 4.04, it being given that log104 = 0.6021 and log10e = 0.4343 ?


Using differential, find the approximate value of the \[\sin\left( \frac{22}{14} \right)\] ?


Using differential, find the approximate value of the \[\left( 66 \right)^\frac{1}{3}\] ?


Using differential, find the approximate value of the \[\sqrt{36 . 6}\] ?


Using differential, find the approximate value of the \[\left( 1 . 999 \right)^5\] ?


Find the approximate value of f (5.001), where f (x) = x3 − 7x2 + 15 ? 


Find the approximate value of log10 1005, given that log10 e = 0.4343 ?


Find the approximate change in the surface area of a cube of side x metres caused by decreasing the side by 1% ?


For the function y = x2, if x = 10 and ∆x = 0.1. Find ∆ y ?


If an error of k% is made in measuring the radius of a sphere, then percentage error in its volume is


A sphere of radius 100 mm shrinks to radius 98 mm, then the approximate decrease in its volume is


The circumference of a circle is measured as 28 cm with an error of 0.01 cm. The percentage error in the area is

 


Find the approximate values of : sin 61° , given that 1° = 0.0174c, `sqrt(3) = 1.732`


Find the approximate values of : tan–1 (1.001)


Find the approximate values of : e0.995, given that e = 2.7183.


Find the approximate values of : loge(9.01), given that log 3 = 1.0986.


Find the approximate values of : f(x) = x3 + 5x2 – 7x + 10 at x = 1.12.


Find the approximate value of the function f(x) = `sqrt(x^2 + 3x)` at x = 1.02.


Find the approximate volume of metal in a hollow spherical shell whose internal and external radii are 3 cm and 3.0005 cm respectively


Find the approximate value of f(3.02), where f(x) = 3x2 + 5x + 3


The approximate value of f(x) = x3 + 5x2 – 7x + 9 at x = 1.1 is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×