हिंदी

If the Radius of a Sphere is Measured as 7 M with an Error of 0.02 M, Find the Approximate Error in Calculating Its Volume ? - Mathematics

Advertisements
Advertisements

प्रश्न

If the radius of a sphere is measured as 7 m with an error of 0.02 m, find the approximate error in calculating its volume ?

योग

उत्तर

Let x be the radius of the sphere and y be its volume.

\[y = \frac{4}{3}\pi x^3 \]

\[\text { Let ∆ x be the error in the radius } . \]

\[x = 7\]

\[ ∆ x = 0 . 02\]

\[\frac{dy}{dx} = 4\pi x^2 \]

\[ \Rightarrow \left( \frac{dy}{dx} \right)_{x = 7} = 196\pi\]

\[ \therefore ∆ y = dy = \frac{dy}{dx}dx = 196\pi \times 0 . 02 = 3 . 92\pi \]

\[\text { Hence, the approximate error in calculating the volume of the sphere is } 3 . 92\pi m^3 .\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 14: Differentials, Errors and Approximations - Exercise 14.1 [पृष्ठ १०]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 14 Differentials, Errors and Approximations
Exercise 14.1 | Q 15 | पृष्ठ १०

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Using differentials, find the approximate value of the following up to 3 places of decimal

`(0.999)^(1/10)`


Using differentials, find the approximate value of the following up to 3 places of decimal

`(82)^(1/4)`


Using differentials, find the approximate value of the following up to 3 places of decimal

`(401)^(1/2)`


Find the approximate value of f (5.001), where f (x) = x3 − 7x2 + 15.


Find the approximate change in the volume V of a cube of side x metres caused by increasing side by 1%.


If the radius of a sphere is measured as 7 m with an error of 0.02m, then find the approximate error in calculating its volume.


If f (x) = 3x2 + 15x + 5, then the approximate value of (3.02) is

A. 47.66

B. 57.66

C. 67.66

D. 77.66


The approximate change in the volume of a cube of side x metres caused by increasing the side by 3% is

A. 0.06 x3 m3 

B. 0.6 x3 m3

C. 0.09 x3 m3

D. 0.9 x3 m3


The points on the curve 9y2 = x3, where the normal to the curve makes equal intercepts with the axes are

(A)`(4, +- 8/3)`

(B) `(4,(-8)/3)`

(C)`(4, +- 3/8)`

(D) `(+-4, 3/8)`


A circular metal plate expends under heating so that its radius increases by k%. Find the approximate increase in the area of the plate, if the radius of the plate before heating is 10 cm.


The height of a cone increases by k%, its semi-vertical angle remaining the same. What is the approximate percentage increase (i) in total surface area, and (ii) in the volume, assuming that k is small ?


Show that the relative error in computing the volume of a sphere, due to an error in measuring the radius, is approximately equal to three times the relative error in the radius ?


Using differential, find the approximate value of the \[\frac{1}{(2 . 002 )^2}\] ?


Using differential, find the approximate value of the  log10 10.1, it being given that log10e = 0.4343 ?


Using differential, find the approximate value of the \[\cos\left( \frac{11\pi}{36} \right)\] ?


Using differential, find the approximate value of the \[\left( 66 \right)^\frac{1}{3}\] ?


Using differential, find the approximate value of the \[\left( 82 \right)^\frac{1}{4}\] ?


Using differential, find the approximate value of the \[\sqrt{49 . 5}\] ?


Using differential, find the approximate value of the \[{25}^\frac{1}{3}\] ?


Find the approximate value of f (2.01), where f (x) = 4x2 + 5x + 2 ?


If y = loge x, then find ∆y when x = 3 and ∆x = 0.03 ?


If the relative error in measuring the radius of a circular plane is α, find the relative error in measuring its area ?


A piece of ice is in the form of a cube melts so that the percentage error in the edge of cube is a, then find the percentage error in its volume ?


If an error of k% is made in measuring the radius of a sphere, then percentage error in its volume is


A sphere of radius 100 mm shrinks to radius 98 mm, then the approximate decrease in its volume is


Find the approximate values of : `sqrt(8.95)`


Find the approximate values of (4.01)3 


Find the approximate values of : loge(9.01), given that log 3 = 1.0986.


Find the approximate value of the function f(x) = `sqrt(x^2 + 3x)` at x = 1.02.


Solve the following : Find the approximate value of cos–1 (0.51), given π = 3.1416, `(2)/sqrt(3)` = 1.1547.


Find the approximate value of (1.999)5.


Find the approximate value of f(3.02), where f(x) = 3x2 + 5x + 3


Find the approximate value of tan−1 (1.002).
[Given: π = 3.1416]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×