हिंदी

The Height of a Cone Increases by K%, Its Semi-vertical Angle Remaining the Same. What is the Approximate Percentage Increase (I) in Total Surface Area, - Mathematics

Advertisements
Advertisements

प्रश्न

The height of a cone increases by k%, its semi-vertical angle remaining the same. What is the approximate percentage increase (i) in total surface area, and (ii) in the volume, assuming that k is small ?

योग

उत्तर

Let h be the height, y be the surface area, V be the volume,l be the slant height and r be the radius of the cone.

\[\text { Let } ∆ \text { h be the change in the height }, ∆ \text { r be the change in the radius of base and } ∆ l \text { be the change in the slant height }. \]

\[\text { Semi - vertical angle ramaining the same } . \]

\[ \therefore \frac{∆ h}{h} = \frac{∆ r}{r} = \frac{∆ l}{l}\]

\[\text { Also }, \frac{∆ h}{h} \times 100 = k\]

\[\text { Then }, \frac{∆ h}{h} \times 100 = \frac{∆ r}{r} \times 100 = \frac{∆ l}{l} \times 100 = k . . . \left( 1 \right)\]

\[\left( i \right) \text { Total surface area of the cone, } T = \pi rl + \pi r^2 \]

\[\text { Differentiating both sides w . r . t . r, we get }\]

\[\frac{dT}{dr} = \pi l + \pi r\frac{dl}{dr} + 2\pi r\]

\[ \Rightarrow \frac{dT}{dr} = \pi l + \pi r\frac{l}{r} + 2\pi r \left[ \text { From } \left( 1 \right), \frac{dl}{dr} = \frac{∆ l}{∆ r} = \frac{l}{r} \right] \]

\[ \Rightarrow \frac{dT}{dr} = \pi l + \pi l + 2\pi r \]

\[ \Rightarrow \frac{dT}{dr} = 2\pi\left( l + r \right)\]

\[ \therefore ∆ T = \frac{dT}{dr} ∆ r = 2\pi\left( l + r \right) \times \frac{kr}{100} = \frac{2kr\pi\left( l + r \right)}{100}\]

\[ \therefore \frac{∆ T}{T} \times 100 = \frac{\left( \frac{2kr\pi\left( l + r \right)}{100} \right)}{2\pi r\left( l + r \right)} \times 100 = 2k  \] % 

\[\text { Hence, the percentage increase in total surface area of cone is } 2k  . \] %

\[\left( ii \right) \text { Volume of cone, V } = \frac{1}{3}\pi r^2 h\]

\[\text { Differentiating both sides w . r . t . h, we get }\]

\[\frac{dV}{dh} = \frac{1}{3}\pi r^2 + \frac{1}{3}\pi h2r\frac{dr}{dh}\]

\[ \Rightarrow \frac{dV}{dh} = \frac{1}{3}\pi r^2 + \frac{1}{3}\pi h2r\frac{r}{h} \left[ \text { From} \left( 1 \right), \frac{dr}{dh} = \frac{∆ r}{∆ h} = \frac{r}{h} \right]\]

\[ \Rightarrow \frac{dV}{dh} = \frac{1}{3}\pi r^2 + \frac{2}{3}\pi r^2 \]

\[ \Rightarrow \frac{dV}{dh} = \pi r^2 \]

\[ \therefore ∆ V = \frac{dV}{dh}dh = \pi r^2 \times \frac{kh}{100} = \frac{k\pi r^2 h}{100}\]

\[ \therefore \frac{∆ V}{V} \times 100 = \frac{\left( \frac{k\pi r^2 h}{100} \right)}{\frac{1}{3}\pi r^2 h} \times 100 = 3k \]%

\[\text { Hence, the percentage increase in thevolume of thecone is } 3k .\]%

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 14: Differentials, Errors and Approximations - Exercise 14.1 [पृष्ठ ९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 14 Differentials, Errors and Approximations
Exercise 14.1 | Q 7 | पृष्ठ ९

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Find the approximate value of cos (60° 30').

(Given: 1° = 0.0175c, sin 60° = 0.8660)


Using differentials, find the approximate value of the following up to 3 places of decimal

`sqrt(49.5)`


Using differentials, find the approximate value of the following up to 3 places of decimal

`sqrt(0.6)`


Using differentials, find the approximate value of the following up to 3 places of decimal

`(401)^(1/2)`


Using differentials, find the approximate value of the following up to 3 places of decimal

`(81.5)^(1/4)`


If the radius of a sphere is measured as 7 m with an error of 0.02m, then find the approximate error in calculating its volume.


If the radius of a sphere is measured as 9 m with an error of 0.03 m, then find the approximate error in calculating in surface area


The approximate change in the volume of a cube of side x metres caused by increasing the side by 3% is

A. 0.06 x3 m3 

B. 0.6 x3 m3

C. 0.09 x3 m3

D. 0.9 x3 m3


Using differentials, find the approximate value of each of the following.

`(33)^(1/5)`


The points on the curve 9y2 = x3, where the normal to the curve makes equal intercepts with the axes are

(A)`(4, +- 8/3)`

(B) `(4,(-8)/3)`

(C)`(4, +- 3/8)`

(D) `(+-4, 3/8)`


Find the percentage error in calculating the surface area of a cubical box if an error of 1% is made in measuring the lengths of edges of the cube ?


Using differential, find the approximate value of the following:  \[\left( 0 . 009 \right)^\frac{1}{3}\]


Using differential, find the approximate value of the \[\left( 15 \right)^\frac{1}{4}\] ?


Using differential, find the approximate value of the loge 4.04, it being given that log104 = 0.6021 and log10e = 0.4343 ?


Using differential, find the approximate value of the loge 10.02, it being given that loge10 = 2.3026 ?


Using differential, find the approximate value of the \[\left( 80 \right)^\frac{1}{4}\] ?


Using differential, find the approximate value of the \[\left( 66 \right)^\frac{1}{3}\] ?


Using differential, find the approximate value of the \[\left( 82 \right)^\frac{1}{4}\] ?


Using differential, find the approximate value of the  \[\sqrt{0 . 082}\] ?


If the radius of a sphere is measured as 9 cm with an error of 0.03 m, find the approximate error in calculating its surface area ?


Find the approximate change in the surface area of a cube of side x metres caused by decreasing the side by 1% ?


For the function y = x2, if x = 10 and ∆x = 0.1. Find ∆ y ?


If the percentage error in the radius of a sphere is α, find the percentage error in its volume ?


If there is an error of 2% in measuring the length of a simple pendulum, then percentage error in its period is


A sphere of radius 100 mm shrinks to radius 98 mm, then the approximate decrease in its volume is


The approximate value of (33)1/5 is


The circumference of a circle is measured as 28 cm with an error of 0.01 cm. The percentage error in the area is

 


Find the approximate value of f(3.02), up to 2 places of decimal, where f(x) = 3x2 + 5x + 3.


Find the approximate values of : `root(5)(31.98)`


Find the approximate values of : (3.97)4 


Find the approximate values of : sin 61° , given that 1° = 0.0174c, `sqrt(3) = 1.732`


Using differentials, find the approximate value of `sqrt(0.082)`


Find the approximate volume of metal in a hollow spherical shell whose internal and external radii are 3 cm and 3.0005 cm respectively


If the radius of a sphere is measured as 9 cm with an error of 0.03 cm, then find the approximating error in calculating its volume.


Find the approximate value of f(3.02), where f(x) = 3x2 + 5x + 3


The approximate value of f(x) = x3 + 5x2 – 7x + 9 at x = 1.1 is ______.


Find the approximate value of sin (30° 30′). Give that 1° = 0.0175c and cos 30° = 0.866


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×